138 research outputs found

    The S-parameter in Holographic Technicolor Models

    Get PDF
    We study the S parameter, considering especially its sign, in models of electroweak symmetry breaking (EWSB) in extra dimensions, with fermions localized near the UV brane. Such models are conjectured to be dual to 4D strong dynamics triggering EWSB. The motivation for such a study is that a negative value of S can significantly ameliorate the constraints from electroweak precision data on these models, allowing lower mass scales (TeV or below) for the new particles and leading to easier discovery at the LHC. We first extend an earlier proof of S>0 for EWSB by boundary conditions in arbitrary metric to the case of general kinetic functions for the gauge fields or arbitrary kinetic mixing. We then consider EWSB in the bulk by a Higgs VEV showing that S is positive for arbitrary metric and Higgs profile, assuming that the effects from higher-dimensional operators in the 5D theory are sub-leading and can therefore be neglected. For the specific case of AdS_5 with a power law Higgs profile, we also show that S ~ + O(1), including effects of possible kinetic mixing from higher-dimensional operator (of NDA size) in the 5D5D theory. Therefore, our work strongly suggests that S is positive in calculable models in extra dimensions.Comment: 21 pages, 2 figures. v2: references adde

    Flavor-Changing Processes in Extended Technicolor

    Full text link
    We analyze constraints on a class of extended technicolor (ETC) models from neutral flavor-changing processes induced by (dimension-six) four-fermion operators. The ETC gauge group is taken to commute with the standard-model gauge group. The models in the class are distinguished by how the left- and right-handed (L,R)(L,R) components of the quarks and charged leptons transform under the ETC group. We consider K0−Kˉ0K^{0} - \bar K^0 and other pseudoscalar meson mixings, and conclude that they are adequately suppressed if the LL and RR components of the relevant quarks are assigned to the same (fundamental or conjugate-fundamental) representation of the ETC group. Models in which the LL and RR components of the down-type quarks are assigned to relatively conjugate representations, while they can lead to realistic CKM mixing and intra-family mass splittings, do not adequately suppress these mixing processes. We identify an approximate global symmetry that elucidates these behavioral differences and can be used to analyze other possible representation assignments. Flavor-changing decays, involving quarks and/or leptons, are adequately suppressed for any ETC-representation assignment of the LL and RR components of the quarks, as well as the leptons. We draw lessons for future ETC model building.Comment: 25 page

    Scalar Loops in Little Higgs Models

    Get PDF
    Loops of the scalar particles present in Little Higgs models generate radiatively scalar operators that have been overlooked before in Little Higgs analyses. We compute them using a technique, recently proposed to deal with scalar fluctuations in non-linear sigma models, that greatly simplifies the calculation. In particular models some of these operators are not induced by loops of gauge bosons or fermions, are consistent with the Little Higgs symmetries that protect the Higgs boson mass, and must also be included in the Lagrangian. In general, scalar loops multiplicatively renormalize the tree-level scalar operators, O_S -> O_S [1- N \Lambda^2/(4\pi f)^2] with large N (e.g. N ~ 20 for the Littlest Higgs), suggesting a true UV cutoff \Lambda < 4 \pi f/\sqrt{N} significantly below the estimate 4\pi f of naive dimensional analysis. This can have important implications for the phenomenology and viability of Little Higgs models.Comment: 28 pages, LaTe

    Little Technicolor

    Full text link
    Inspired by the AdS/CFT correspondence, we show that any G/H symmetry breaking pattern can be described by a simple two-site moose diagram. This construction trivially reproduces the CCWZ prescription in the context of Hidden Local Symmetry. We interpret this moose in a novel way to show that many little Higgs theories can emerge from ordinary chiral symmetry breaking in scaled-up QCD. We apply this reasoning to the simple group little Higgs to see that the same low energy degrees of freedom can arise from a variety of UV complete theories. We also show how models of holographic composite Higgs bosons can turn into brane-localized little technicolor theories by "integrating in" the IR brane.Comment: 26 pages, 2 figures; v2: references added; v3: added section on vacuum alignment to match JHEP versio

    Supersymmetric origin of a low aJ/psia_{J/psi} CP asymmetry

    Full text link
    We show that general Minimal Supersymmetric extensions of the Standard Model (MSSM) allow for a CP asymmetry in B --> J/psi K(S) well bellow the SM expectations with dominant Supersymmetric contributions to epsilon_K and epsilon'/epsilon. Indeed, we provide an explicit example of an MSSM with non-universal soft breaking terms fully consistent with the low results of this asymmetry recently announced by Babar and Belle collaborations.Comment: 6 pages, no figures. Reference added, typos correcte

    Axion and neutrino physics from anomaly cancellation

    Get PDF
    It has been recently shown that the requirement of anomaly cancellation in a (non-supersymmetric) six-dimensional version of the standard model fixes the field content to the known three generations. We discuss the phenomenological consequences of the cancellation of the local anomalies: the strong CP problem is solved and the fundamental scale of the theory is bounded by the physics of the axion. Neutrinos acquire a mass in the range suggested by atmospheric experiments.Comment: 9 pages, RevTeX

    The Littlest Higgs in Anti-de Sitter Space

    Full text link
    We implement the SU(5)/SO(5) littlest Higgs theory in a slice of 5D Anti-de Sitter space bounded by a UV brane and an IR brane. In this model, there is a bulk SU(5) gauge symmetry that is broken to SO(5) on the IR brane, and the Higgs boson is contained in the Goldstones from this breaking. All of the interactions on the IR brane preserve the global symmetries that protect the Higgs mass, but a radiative potential is generated through loops that stretch to the UV brane where there are explicit SU(5) violating boundary conditions. Like the original littlest Higgs, this model exhibits collective breaking in that two interactions must be turned on in order to generate a Higgs potential. In AdS space, however, collective breaking does not appear in coupling constants directly but rather in the choice of UV brane boundary conditions. We match this AdS construction to the known low energy structure of the littlest Higgs and comment on some of the tensions inherent in the AdS construction. We calculate the 5D Coleman-Weinberg effective potential for the Higgs and find that collective breaking is manifest. In a simplified model with only the SU(2) gauge structure and the top quark, the physical Higgs mass can be of order 200 GeV with no considerable fine tuning (25%). We sketch a more realistic model involving the entire gauge and fermion structure that also implements T-parity, and we comment on the tension between T-parity and flavor structure.Comment: 42 pages, 7 figures, 3 tables; v2: minor rewording, JHEP format; v3: to match JHEP versio

    The Intermediate Higgs

    Full text link
    Two paradigms for the origin of electroweak superconductivity are a weakly coupled scalar condensate, and a strongly coupled fermion condensate. The former suffers from a finetuning problem unless there are cancelations to radiative corrections, while the latter presents potential discrepancies with precision electroweak physics. Here we present a framework for electroweak symmetry breaking which interpolates between these two paradigms, and mitigates their faults. As in Little Higgs theories, the Higgs is a pseudo-Nambu Goldstone boson, potentially composite. The cutoff sensitivity of the one loop top quark contribution to the effective potential is canceled by contributions from additional vector-like quarks, and the cutoff can naturally be higher than in the minimal Standard Model. Unlike the Little Higgs models, the cutoff sensitivity from one loop gauge contributions is not canceled. However, such gauge contributions are naturally small as long as the cutoff is below 6 TeV. Precision electroweak corrections are suppressed relative to those of Technicolor or generic Little Higgs theories. In some versions of the intermediate scenario, the Higgs mass is computable in terms of the masses of these additional fermions and the Nambu-Goldstone Boson decay constant. In addition to the Higgs, new scalar and pseudoscalar particles are typically present at the weak scale

    Smoking-gun signatures of little Higgs models

    Full text link
    Little Higgs models predict new gauge bosons, fermions and scalars at the TeV scale that stabilize the Higgs mass against quadratically divergent one-loop radiative corrections. We categorize the many little Higgs models into two classes based on the structure of the extended electroweak gauge group and examine the experimental signatures that identify the little Higgs mechanism in addition to those that identify the particular little Higgs model. We find that by examining the properties of the new heavy fermion(s) at the LHC, one can distinguish the structure of the top quark mass generation mechanism and test the little Higgs mechanism in the top sector. Similarly, by studying the couplings of the new gauge bosons to the light Higgs boson and to the Standard Model fermions, one can confirm the little Higgs mechanism and determine the structure of the extended electroweak gauge group.Comment: 59 pages, 10 figures. v2: refs added, typos fixed, JHEP versio

    Cancellation of Global Anomalies in Spontaneously Broken Gauge Theories

    Full text link
    We discuss the generalization to global gauge anomalies of the familiar procedure for the cancellation of local gauge anomalies in effective theories of spontaneously broken symmetries. We illustrate this mechanism in a recently proposed six-dimensional extension of the standard model.Comment: 5 pages; v2: version to appear in Phys. Rev.
    • 

    corecore