84 research outputs found
Distorted magnetic orders and electronic structures of tetragonal FeSe from first-principles
We use the state-of-the-arts density-functional-theory method to study
various magnetic orders and their effects on the electronic structures of the
FeSe. Our calculated results show that, for the spins of the single Fe layer,
the striped antiferromagnetic orders with distortion are more favorable in
total energy than the checkerboard antiferromagnetic orders with tetragonal
symmetry, which is consistent with known experimental data, and the inter-layer
magnetic interaction is very weak. We investigate the electronic structures and
magnetic property of the distorted phases. We also present our calculated spin
coupling constants and discuss the reduction of the Fe magnetic moment by
quantum many-body effects. These results are useful to understand the
structural, magnetic, and electronic properties of FeSe, and may have some
helpful implications to other FeAs-based materials
Towards Generalist Biomedical AI
Medicine is inherently multimodal, with rich data modalities spanning text,
imaging, genomics, and more. Generalist biomedical artificial intelligence (AI)
systems that flexibly encode, integrate, and interpret this data at scale can
potentially enable impactful applications ranging from scientific discovery to
care delivery. To enable the development of these models, we first curate
MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses
14 diverse tasks such as medical question answering, mammography and
dermatology image interpretation, radiology report generation and
summarization, and genomic variant calling. We then introduce Med-PaLM
Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI
system. Med-PaLM M is a large multimodal generative model that flexibly encodes
and interprets biomedical data including clinical language, imaging, and
genomics with the same set of model weights. Med-PaLM M reaches performance
competitive with or exceeding the state of the art on all MultiMedBench tasks,
often surpassing specialist models by a wide margin. We also report examples of
zero-shot generalization to novel medical concepts and tasks, positive transfer
learning across tasks, and emergent zero-shot medical reasoning. To further
probe the capabilities and limitations of Med-PaLM M, we conduct a radiologist
evaluation of model-generated (and human) chest X-ray reports and observe
encouraging performance across model scales. In a side-by-side ranking on 246
retrospective chest X-rays, clinicians express a pairwise preference for
Med-PaLM M reports over those produced by radiologists in up to 40.50% of
cases, suggesting potential clinical utility. While considerable work is needed
to validate these models in real-world use cases, our results represent a
milestone towards the development of generalist biomedical AI systems
A Combination of Nutriments Improves Mitochondrial Biogenesis and Function in Skeletal Muscle of Type 2 Diabetic Goto–Kakizaki Rats
BACKGROUND: Recent evidence indicates that insulin resistance in skeletal muscle may be related to reduce mitochondrial number and oxidation capacity. However, it is not known whether increasing mitochondrial number and function improves insulin resistance. In the present study, we investigated the effects of a combination of nutrients on insulin resistance and mitochondrial biogenesis/function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that defect of glucose and lipid metabolism is associated with low mitochondrial content and reduced mitochondrial enzyme activity in skeletal muscle of the diabetic Goto-Kakizaki rats. The treatment of combination of R-alpha-lipoic acid, acetyl-L-carnitine, nicotinamide, and biotin effectively improved glucose tolerance, decreased the basal insulin secretion and the level of circulating free fatty acid (FFA), and prevented the reduction of mitochondrial biogenesis in skeletal muscle. The nutrients treatment also significantly increased mRNA levels of genes involved in lipid metabolism, including peroxisome proliferator-activated receptor-alpha (Ppar alpha), peroxisome proliferator-activated receptor-delta (Ppar delta), and carnitine palmitoyl transferase-1 (Mcpt-1) and activity of mitochondrial complex I and II in skeletal muscle. All of these effects of mitochondrial nutrients are comparable to that of the antidiabetic drug, pioglitazone. In addition, the treatment with nutrients, unlike pioglitazone, did not cause body weight gain. CONCLUSIONS/SIGNIFICANCE: These data suggest that a combination of mitochondrial targeting nutrients may improve skeletal mitochondrial dysfunction and exert hypoglycemic effects, without causing weight gain
Recommended from our members
Biparental Inheritance of Mitochondrial DNA in Humans.
Although there has been considerable debate about whether paternal mitochondrial DNA (mtDNA) transmission may coexist with maternal transmission of mtDNA, it is generally believed that mitochondria and mtDNA are exclusively maternally inherited in humans. Here, we identified three unrelated multigeneration families with a high level of mtDNA heteroplasmy (ranging from 24 to 76%) in a total of 17 individuals. Heteroplasmy of mtDNA was independently examined by high-depth whole mtDNA sequencing analysis in our research laboratory and in two Clinical Laboratory Improvement Amendments and College of American Pathologists-accredited laboratories using multiple approaches. A comprehensive exploration of mtDNA segregation in these families shows biparental mtDNA transmission with an autosomal dominantlike inheritance mode. Our results suggest that, although the central dogma of maternal inheritance of mtDNA remains valid, there are some exceptional cases where paternal mtDNA could be passed to the offspring. Elucidating the molecular mechanism for this unusual mode of inheritance will provide new insights into how mtDNA is passed on from parent to offspring and may even lead to the development of new avenues for the therapeutic treatment for pathogenic mtDNA transmission
Recommended from our members
Reply to Lutz-Bonengel et al.: Biparental mtDNA transmission is unlikely to be the result of nuclear mitochondrial DNA segments.
Pangenomics enables genotyping of known structural variants in 5202 diverse genomes
We introduce Giraffe, a pangenome short-read mapper that can efficiently map to a collection of haplotypes threaded through a sequence graph. Giraffe maps sequencing reads to thousands of human genomes at a speed comparable to that of standard methods mapping to a single reference genome. The increased mapping accuracy enables downstream improvements in genome-wide genotyping pipelines for both small variants and larger structural variants. We used Giraffe to genotype 167,000 structural variants, discovered in long-read studies, in 5202 diverse human genomes that were sequenced using short reads. We conclude that pangenomics facilitates a more comprehensive characterization of variation and, as a result, has the potential to improve many genomic analyses
Recommended from our members
Genotyping common, large structural variations in 5,202 genomes using pangenomes, the Giraffe mapper, and the vg toolkit
ABSTRACT We introduce Giraffe, a pangenome short read mapper that can efficiently map to a collection of haplotypes threaded through a sequence graph. Giraffe, part of the variation graph toolkit (vg) 1 , maps reads to thousands of human genomes at around the same speed BWA-MEM 2 maps reads to a single reference genome, while maintaining comparable accuracy to VG-MAP, vg’s original mapper. We have developed efficient genotyping pipelines using Giraffe. We demonstrate improvements in genotyping for single-nucleotide variants (SNVs), small insertions and deletions (indels) and structural variations (SVs) genome-wide. We use Giraffe to genotype about 167 thousand structural variants ascertained from long read studies in 5,202 human genomes sequenced with short reads, including the complete 1000 Genomes Project dataset, at an average cost of $1.50 per sample. We determine the frequency of these variations in diverse human populations, characterize their complex allelic variations and identify thousands of expression quantitative trait loci (eQTLs) driven by these variations
- …