304 research outputs found
Wide-range optical studies on various single-walled carbon nanotubes: the origin of the low-energy gap
We present wide-range (3 meV - 6 eV) optical studies on freestanding
transparent carbon nanotube films, made from nanotubes with different diameter
distributions. In the far-infrared region, we found a low-energy gap in all
samples investigated. By a detailed analysis we determined the average
diameters of both the semiconducting and metallic species from the near
infrared/visible features of the spectra. Having thus established the
dependence of the gap value on the mean diameter, we find that the frequency of
the low energy gap is increasing with increasing curvature. Our results
strongly support the explanation of the low-frequency feature as arising from a
curvature-induced gap instead of effective medium effects. Comparing our
results with other theoretical and experimental low-energy gap values, we find
that optical measurements yield a systematically lower gap than tunneling
spectroscopy and DFT calculations, the difference increasing with decreasing
diameter. This difference can be assigned to electron-hole interactions.Comment: 9 pages, 8 figures, to be published in Physical Review B,
supplemental material attached v2: Figures 1, 7 and 8 replaced, minor changes
to text; v3: Figures 3, 4 and 5 replaced, minor changes to tex
Phase-slip avalanches in the superflow of He through arrays of nanopores
Recent experiments by Sato et al. [1] have explored the dynamics of He
superflow through an array of nanopores. These experiments have found that, as
the temperature is lowered, phase-slippage in the pores changes its character,
from synchronous to asynchronous. Inspired by these experiments, we construct a
model to address the characteristics of phase-slippage in superflow through
nanopore arrays. We focus on the low-temperature regime, in which the
current-phase relation for a single pore is linear, and thermal fluctuations
may be neglected. Our model incorporates two basic ingredients: (1) each pore
has its own random value of critical velocity (due, e.g., to atomic-scale
imperfections), and (2) an effective inter-pore coupling, mediated through the
bulk superfluid. The inter-pore coupling tends to cause neighbours of a pore
that has already phase-slipped also to phase-slip; this process may cascade,
creating an avalanche of synchronously slipping phases. As the temperature is
lowered, the distribution of critical velocities is expected to effectively
broaden, owing to the reduction in the superfluid healing length, leading to a
loss of synchronicity in phase-slippage. Furthermore, we find that competition
between the strength of the disorder in the critical velocities and the
strength of the inter-pore interaction leads to a phase transition between
non-avalanching and avalanching regimes of phase-slippage.
[1] Sato, Y., Hoskinson, E. Packard, R. E. cond-mat/0605660.Comment: 8 pages, 5 figure
Charge transfer excitons in optical absorption spectra of C60-dimers and polymers
Charge-transfer (CT) exciton effects are investigated for the optical
absorption spectra of crosslinked C60 systems by using the intermediate exciton
theory. We consider the C60-dimers, and the two (and three) molecule systems of
the C60-polymers. We use a tight-binding model with long-range Coulomb
interactions among electrons, and the model is treated by the Hartree-Fock
approximation followed by the single-excitation configuration interaction
method. We discuss the variations in the optical spectra by changing the
conjugation parameter between molecules. We find that the total CT-component
increases in smaller conjugations, and saturates at the intermediate
conjugations. It decreases in the large conjugations. We also find that the
CT-components of the doped systems are smaller than those of the neutral
systems, indicating that the electron-hole distance becomes shorter in the
doped C60-polymers.Comment: Figures should be requested to the autho
A Mott Glass to Superfluid Transition for Random Bosons in Two Dimensions
We study the zero temperature superfluid-insulator transition for a
two-dimensional model of interacting, lattice bosons in the presence of
quenched disorder and particle-hole symmetry. We follow the approach of a
recent series of papers by Altman, Kafri, Polkovnikov, and Refael, in which the
strong disorder renormalization group is used to study disordered bosons in one
dimension. Adapting this method to two dimensions, we study several different
species of disorder and uncover universal features of the superfluid-insulator
transition. In particular, we locate an unstable finite disorder fixed point
that governs the transition between the superfluid and a gapless, glassy
insulator. We present numerical evidence that this glassy phase is the
incompressible Mott glass and that the transition from this phase to the
superfluid is driven by percolation-type process. Finally, we provide estimates
of the critical exponents governing this transition.Comment: (24 pages + 7 page appendix, 28 figures) This version has been
accepted to PRB. We have acquired new data that resolves the contradiction
between two estimates of the critical exponents in the earlier version of the
pape
Signatures of the superfluid to Mott insulator transition in equilibrium and in dynamical ramps
We investigate the equilibrium and dynamical properties of the Bose-Hubbard
model and the related particle-hole symmetric spin-1 model in the vicinity of
the superfluid to Mott insulator quantum phase transition. We employ the
following methods: exact-diagonalization, mean field (Gutzwiller), cluster
mean-field, and mean-field plus Gaussian fluctuations. In the first part of the
paper we benchmark the four methods by analyzing the equilibrium problem and
give numerical estimates for observables such as the density of double
occupancies and their correlation function. In the second part, we study
parametric ramps from the superfluid to the Mott insulator and map out the
crossover from the regime of fast ramps, which is dominated by local physics,
to the regime of slow ramps with a characteristic universal power law scaling,
which is dominated by long wavelength excitations. We calculate values of
several relevant physical observables, characteristic time scales, and an
optimal protocol needed for observing universal scaling.Comment: 23 pages, 13 figure
Local superfluid densities probed via current-induced superconducting phase gradients
We have developed a superconducting phase gradiometer consisting of two
parallel DNA-templated nanowires connecting two thin-film leads. We have ramped
the cross current flowing perpendicular to the nanowires, and observed
oscillations in the lead-to-lead resistance due to cross-current-induced phase
differences. By using this gradiometer we have measured the temperature and
magnetic field dependence of the superfluid density and observed an
amplification of phase gradients caused by elastic vortex displacements. We
examine our data in light of Miller-Bardeen theory of dirty superconductors and
a microscale version of Campbell's model of field penetration.Comment: 5 pages, 6 figure
Suppression of 2\pi\ phase-slip due to hidden zero modes in one dimensional topological superconductors
We study phase slips in one-dimensional topological superconducting wires.
These wires have been proposed as building blocks for topologically protected
qubits in which the quantum information is distributed over the length of the
device and thus is immune to local sources of decoherence. However, phase-slips
are non-local events that can result in decoherence. Phase slips in topological
superconductors are peculiar for the reason that they occur in multiples of
4\pi\ (instead of 2\pi\ in conventional superconductors). We re-establish this
fact via a beautiful analogy to the particle physics concept of dynamic
symmetry breaking by explicitly finding a "hidden" zero mode in the fermion
spectrum computed in the background of a 2\pi\ phase-slip. Armed with the
understanding of phase-slips in topological superconductors, we propose a
simple experimental setup with which the predictions can be tested by
monitoring tunneling rate of a superconducting flux quantum through a
topological superconducting wire.Comment: 18 pages,14 figures, Updated referenc
- …