40 research outputs found

    FluoroSpot Analysis of TLR-Activated Monocytes Reveals Several Distinct Cytokine-Secreting Subpopulations

    Get PDF
    Monocytes have long been considered a heterogeneous group of cells both in terms of morphology and function. In humans, three distinct subsets have been described based on their differential expression of the cell surface markers CD14 and CD16. However, the relationship between these subsets and the production of cytokines has for the most part been based on ELISA measurements, making it difficult to draw conclusions as to their functional profile on the cellular level. In this study, we have investigated lipoteichoic acid (LTA)- and lipopolysaccharide (LPS)-induced cytokine secretion by monocytes using the FluoroSpot technique. This method measures the number of cytokine-secreting cells on the single-cell level and uses fluorescent detection, allowing for the simultaneous analysis of two cytokines from the same population of isolated cells. By this approach, human monocytes from healthy volunteers could be divided into several subgroups as IL-1β, IL-6, TNF-α and MIP-1β were secreted by larger populations of responding cells (25.9–39.2%) compared with the smaller populations of GM-CSF (9.1%), IL-10 (1.3%) and IL-12p40 (1.2%). Furthermore, when studying co-secretion in FluoroSpot, an intricate relationship between the monocytes secreting IL-1β and/or IL-6 and those secreting TNF-α, MIP-1β, GM-CSF, IL-10 and IL-12p40 was revealed. In this way, dissecting the secretion pattern of the monocytes in response to TLR-2 or TLR-4 stimulation, several subpopulations with distinct cytokine-secreting profiles could be identified

    Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent Apoptosis, but are insensitive to direct activation with exogenous fas ligand

    Get PDF
    Introduction Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma. Aims To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines. Results Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both. Conclusions 1) Both primary and malignant cholangiocytes are relatively resistant to Fas–mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes
    corecore