240 research outputs found

    Predictive use of the Maximum Entropy Production principle for Past and Present Climates

    Full text link
    In this paper, we show how the MEP hypothesis may be used to build simple climate models without representing explicitly the energy transport by the atmosphere. The purpose is twofold. First, we assess the performance of the MEP hypothesis by comparing a simple model with minimal input data to a complex, state-of-the-art General Circulation Model. Next, we show how to improve the realism of MEP climate models by including climate feedbacks, focusing on the case of the water-vapour feedback. We also discuss the dependence of the entropy production rate and predicted surface temperature on the resolution of the model

    Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states

    Full text link
    Jaynes' information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. The key result is the construction of the probability distribution for the underlying microscopic phase space trajectories. Three consequences of this result are then derived : the fluctuation theorem, the principle of maximum entropy production, and the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The accumulating empirical evidence for these results lends support to Jaynes' formalism as a common predictive framework for equilibrium and non-equilibrium statistical mechanics.Comment: 21 pages, 0 figures, minor modifications, version to appear in J. Phys. A. (2003

    Ventilatory frequency as a measure of the response of tammar wallabies (Macropus eugenii) to the odour of potential predators

    Get PDF
    This study uses changes in ventilatory frequency to quantify the physiological response of an Australian terrestrial herbivore, the tammar wallaby (Macropus eugenii), to olfactory cues suggesting the presence of potential predators. Ventilatory frequency proved to be a quantifiable measure to assess the response of this macropod marsupial to olfactory cues. Ventilatory frequency increased from mean resting levels of 45 ± 5.1 breaths min–1 to 137 ± 11.2 breaths min–1 during the first minute of exposure to all odours. These physiological responses diminished over time, with ventilatory frequency in the first minute after introduction of the scents greater than that during the subsequent four, suggesting that the initial reaction was due to disturbance and was investigative in nature. However, the ratio of ventilatory frequency in the remaining 4 min after introduction of the odours compared with before was greater for fox (3.58 ± 0.918) and cat (2.44 ± 0.272) odours than for snake (2.27 ± 0.370), distilled water (1.81 ± 0.463) and quoll (1.71 ± 0.245) odours, suggesting that fox and cat odour provoked a greater response. However, the wallabies’ response to the odour of these introduced predators and to horse odour (2.40 ± 0.492) did not differ. Our study indicates that a long period of co-history with particular predators is not a prerequisite for detection of potentially threatening species. We do not find any support for the hypothesis that an inability to interpret olfactory cues to detect and respond to potential predation by introduced predators is responsible for the decline of these macropod marsupials

    No measure for culture? Value in the new economy

    Get PDF
    This paper explores articulations of the value of investment in culture and the arts through a critical discourse analysis of policy documents, reports and academic commentary since 1997. It argues that in this period, discourses around the value of culture have moved from a focus on the direct economic contributions of the culture industries to their indirect economic benefits. These indirect benefits are discussed here under three main headings: creativity and innovation, employability, and social inclusion. These are in turn analysed in terms of three forms of capital: human, social and cultural. The paper concludes with an analysis of this discursive shift through the lens of autonomist Marxist concerns with the labour of social reproduction. It is our argument that, in contemporary policy discourses on culture and the arts, the government in the UK is increasingly concerned with the use of culture to form the social in the image of capital. As such, we must turn our attention beyond the walls of the factory in order to understand the contemporary capitalist production of value and resistance to it. </jats:p

    Small Open Chemical Systems Theory and Its Implications to Darwinian Evolutionary Dynamics, Complex Self-Organization and Beyond

    Full text link
    The study of biological cells in terms of mesoscopic, nonequilibrium, nonlinear, stochastic dynamics of open chemical systems provides a paradigm for other complex, self-organizing systems with ultra-fast stochastic fluctuations, short-time deterministic nonlinear dynamics, and long-time evolutionary behavior with exponentially distributed rare events, discrete jumps among punctuated equilibria, and catastrophe.Comment: 15 page

    On the use of reanalysis data for downscaling

    Get PDF
    In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice is provided. To this end, the similarity of middle-tropospheric variables—which are important for the development of both dynamical and statistical downscaling schemes—from 40-yr European Centre for Medium- Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR reanalysis data on a daily time scale is assessed. For estimating the distributional similarity, two comparable scores are used: the twosample Kolmogorov–Smirnov statistic and the probability density function (PDF) score. In addition, the similarity of the day-to-day sequences is evaluated with the Pearson correlation coefficient. As the most important results demonstrated, the PDF score is found to be inappropriate if the underlying data follow a mixed distribution. By providing global similarity maps for each variable under study, regions where reanalysis data should not assumed to be ‘‘perfect’’ are detected. In contrast to the geopotential and temperature, significant distributional dissimilarities for specific humidity are found in almost every region of the world. Moreover, for the latter these differences not only occur in the mean, but also in higher-order moments. However, when considering standardized anomalies, distributional and serial dissimilarities are negligible overmost extratropical land areas. Since transformed reanalysis data are not appropriate for regional climate models—in opposition to statistical approaches—their results are expected to be more sensitive to reanalysis choice

    Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding

    Get PDF
    Wheat is an important staple that acts as a primary source of dietary energy, protein, and essential micronutrients such as iron (Fe) and zinc (Zn) for the world’s population. Approximately two billion people suffer from micronutrient deficiency, thus breeders have crossed high Zn progenitors such as synthetic hexaploid wheat, T. dicoccum, T. spelta, and landraces to generate wheat varieties with competitive yield and enhanced grain Zn that are being adopted by farmers in South Asia. Here we report a genome-wide association study (GWAS) using the wheat Illumina iSelect 90 K Infinitum SNP array to characterize grain Zn concentrations in 330 bread wheat lines. Grain Zn phenotype of this HarvestPlus Association Mapping (HPAM) panel was evaluated across a range of environments in India and Mexico. GWAS analysis revealed 39 marker-trait associations for grain Zn. Two larger effect QTL regions were found on chromosomes 2 and 7. Candidate genes (among them zinc finger motif of transcription-factors and metal-ion binding genes) were associated with the QTL. The linked markers and associated candidate genes identified in this study are being validated in new biparental mapping populations for marker-assisted breeding

    Entropy production and coarse graining of the climate fields in a general circulation model

    Get PDF
    We extend the analysis of the thermodynamics of the climate system by investigating the role played by processes taking place at various spatial and temporal scales through a procedure of coarse graining. We show that the coarser is the graining of the climatic fields, the lower is the resulting estimate of the material entropy production. In other terms, all the spatial and temporal scales of variability of the thermodynamic fields provide a positive contribution to the material entropy production. This may be interpreted also as that, at all scales, the temperature fields and the heating fields resulting from the convergence of turbulent fluxes have a negative correlation, while the opposite holds between the temperature fields and the radiative heating fields. Moreover, we obtain that the latter correlations are stronger, which confirms that radiation acts as primary driver for the climatic processes, while the material fluxes dampen the resulting fluctuations through dissipative processes. We also show, using specific coarse-graining procedures, how one can separate the various contributions to the material entropy production coming from the dissipation of kinetic energy, the vertical sensible and latent heat fluxes, and the large scale horizontal fluxes, without resorting to the full three-dimensional time dependent fields. We find that most of the entropy production is associated to irreversible exchanges occurring along the vertical direction, and that neglecting the horizontal and time variability of the fields has a relatively small impact on the estimate of the material entropy production. The approach presented here seems promising for testing climate models, for assessing the impact of changing their parametrizations and their resolution, as well as for investigating the atmosphere of exoplanets, because it allows for evaluating the error in the estimate of their thermodynamical properties due to the lack of high-resolution data. The findings on the impact of coarse graining on the thermodynamic fields on the estimate of the material entropy production deserve to be explored in a more general context, because they provide a way for understanding the relationship between forced fluctuations and dissipative processes in continuum systems

    Crosstalk between glial and glioblastoma cells triggers the "go-or-grow" phenotype of tumor cells

    Get PDF
    Background: Glioblastoma (GBM), the most malignant primary brain tumor, leads to poor and unpredictable clinical outcomes. Recent studies showed the tumor microenvironment has a critical role in regulating tumor growth by establishing a complex network of interactions with tumor cells. In this context, we investigated how GBM cells modulate resident glial cells, particularly their paracrine activity, and how this modulation can influence back on the malignant phenotype of GBM cells. Methods: Conditioned media (CM) of primary mouse glial cultures unexposed (unprimed) or exposed (primed) to the secretome of GL261 GBM cells were analyzed by proteomic analysis. Additionally, these CM were used in GBM cells to evaluate their impact in glioma cell viability, migration capacity and activation of tumor-related intracellular pathways. Results: The proteomic analysis revealed that the pre-exposure of glial cells to CM from GBM cells led to the upregulation of several proteins related to inflammatory response, cell adhesion and extracellular structure organization within the secretome of primed glial cells. At the functional levels, CM derived from unprimed glial cells favored an increase in GBM cell migration capacity, while CM from primed glial cells promoted cells viability. These effects on GBM cells were accompanied by activation of particular intracellular cancer-related pathways, mainly the MAPK/ERK pathway, which is a known regulator of cell proliferation. Conclusions: Together, our results suggest that glial cells can impact on the pathophysiology of GBM tumors, and that the secretome of GBM cells is able to modulate the secretome of neighboring glial cells, in a way that regulates the "go-or-grow" phenotypic switch of GBM cells.Fundação para a Ciência e Tecnologia (IF/00601/2012 to B.M.C.; IF/00111 to A.J.S; SFRH/BD/52287/2013 to A.I.O.; SFRH/BD/81495/2011 to S.I.A.; SFRH/BD/88121/2012 to J.V.C.; projects PTDC/SAU-GMG/113795/2009 to B.M.C.; PTDC/NEU-NMC/0205/2012, PTDC/NEU-SCC/7051/2014, PEst-C/SAU/LA0001/2013–2014 and UID/NEU/04539/2013 to B.M.), Liga Portuguesa Contra o Cancro (B.M.C.), Fundação Calouste Gulbenkian (B.M.C.) and Inter-University Doctoral Programme in Ageing and Chronic Disease (PhDOC; to A.I.O.). Project co-financed by Programa Operacional Regional do Norte (ON.2—O Novo Norte), Quadro de Referência Estratégico Nacional (QREN), Fundo Europeu de Desenvolvimento Regional (FEDER), Programa Operacional Factores de Competitividade (COMPETE), and by The National Mass Spectrometry Network (RNEM) under the contract REDE/1506/REM/2005info:eu-repo/semantics/publishedVersio
    • …
    corecore