47 research outputs found
Magnetic order in the pseudogap phase of high- superconductors
One of the leading issues in high- superconductors is the origin of the
pseudogap phase in underdoped cuprates. Using polarized elastic neutron
diffraction, we identify a novel magnetic order in the YBaCuO
system. The observed magnetic order preserves translational symmetry as
proposed for orbital moments in the circulating current theory of the pseudogap
state. To date, it is the first direct evidence of an hidden order parameter
characterizing the pseudogap phase in high- cuprates.Comment: 3 figure
Two resonant magnetic modes in an overdoped high- superconductor
A detailed inelastic neutron scattering study of the overdoped high
temperature copper oxide superconductor
reveals two distinct magnetic resonant modes in the superconducting state. The
modes differ in their symmetry with respect to exchange between adjacent copper
oxide layers. Counterparts of the mode with odd symmetry, but not the one with
even symmetry, had been observed before at lower doping levels. The observation
of the even mode resolves a long-standing puzzle, and the spectral weight ratio
of both modes yields an estimate of the onset of particle-hole spin-flip
excitations.Comment: Submitted to PR
Nodal Landau Fermi-Liquid Quasiparticles in Overdoped LaSrCuO
Nodal angle resolved photoemission spectra taken on overdoped
LaSrCuO are presented and analyzed. It is proven that the
low-energy excitations are true Landau Fermi-liquid quasiparticles. We show
that momentum and energy distribution curves can be analyzed self-consistently
without quantitative knowledge of the bare band dispersion. Finally, by
imposing Kramers-Kronig consistency on the self-energy , insight into
the quasiparticle residue is gained. We conclude by comparing our results to
quasiparticle properties extracted from thermodynamic, magneto-resistance, and
high-field quantum oscillation experiments on overdoped
TlBaCuO.Comment: Accepted for publication in Phys. Rev.
Electronic structure near the 1/8-anomaly in La-based cuprates
We report an angle resolved photoemission study of the electronic structure
of the pseudogap state in \NdLSCO ( K). Two opposite dispersing Fermi
arcs are the main result of this study. The several scenarios that can explain
this observation are discussed.Comment: A high-resolution version can be found at
http://lns.web.psi.ch/lns/download/Pockets/arXiv.pd
Magnetic-field-induced spin excitations and renormalized spin gap of the underdoped superconductor LaSrCuO
High-resolution neutron inelastic scattering experiments in applied magnetic
fields have been performed on LaSrCuO (LSCO). In zero
field, the temperature dependence of the low-energy peak intensity at the
incommensurate momentum-transfer $\mathbf{Q}^{\
}_{\mathrm{IC}}=(0.5,0.5\pm\delta,0),(0.5\pm\delta,0.5,0)T^{\}_{c}$ which broadens and shifts to lower
temperature upon the application of a magnetic field along the c-axis. A
field-induced enhancement of the spectral weight is observed, but only at
finite energy transfers and in an intermediate temperature range. These
observations establish the opening of a strongly downward renormalized spin gap
in the underdoped regime of LSCO. This behavior contrasts with the observed
doping dependence of most electronic energy features.Comment: accepted for publication in Phys. Rev. Let