148 research outputs found
Evolving Role of Endoscopic Retrograde Cholangiopancreatography in Management of Extrahepatic Hepatic Ductal Injuries due to Blunt Trauma: Diagnostic and Treatment Algorithms
Extrahepatic hepatic ductal injuries (EHDIs) due to blunt abdominal trauma are rare. Given the rarity of these injuries and the insidious onset of symptoms, EHDI are commonly missed during the initial trauma evaluation, making their diagnosis difficult and frequently delayed. Diagnostic modalities useful in the setting of EHDI include computed tomography (CT), abdominal ultrasonography (AUS), nuclear imaging (HIDA scan), and cholangiography. Traditional options in management of EHDI include primary ductal repair with or without a T-tube, biliary-enteric anastomosis, ductal ligation, stenting, and drainage. Simple drainage and biliary decompression is often the most appropriate treatment in unstable patients. More recently, endoscopic retrograde cholangiopancreatography (ERCP) allowed for diagnosis and potential treatment of these injuries via stenting and/or papillotomy. Our review of 53 cases of EHDI reported in the English-language literature has focused on the evolving role of ERCP in diagnosis and treatment of these injuries. Diagnostic and treatment algorithms incorporating ERCP have been designed to help systematize and simplify the management of EHDI. An illustrative case is reported of blunt traumatic injury involving both the extrahepatic portion of the left hepatic duct and its confluence with the right hepatic duct. This injury was successfully diagnosed and treated using ERCP
The Role of Biosurgical Hemostatic Sealants in Cardiac Surgery
The focus on superb quality and value of medical and surgical care has become a cornerstone of modern clinical practice. Within the realm of cardiothoracic surgery, quality is synonymous with technically excellent, safely conducted operative procedure followed by an uneventful patient recovery and follow-up. Critical to this process of clinical value creation is meticulous attention to all aspects of every step along the management continuum. From surgical quality improvement perspective, the reduction in blood loss and thus minimization of blood/blood product transfusions are of critical importance. This chapter focuses on the role of biosurgicals as useful adjuncts to achieving the ultimate goal of uneventful cardiac procedure and thus set the patient’s clinical course for optimal postoperative recovery and long-term well-being
Quasilinear Drift Of Cosmic Rays In Weak Turbulent Electromagnetic Fields
A general quasilinear transport parameter for particle drift in arbitrary
turbulence geometry is presented. The new drift coefficient is solely
characterized by a nonresonant term and is evaluated for slab and
two-dimensional turbulence geometry. The calculations presented here
demonstrate that fluctuating electric fields are a key quantity for
understanding quasilinear particle drift in slab geometry. It is shown that
particle drift does not exist in unpolarized and purely magnetic slab
fluctuations. This is in stark contrast to previous models, which are
restricted to slab geometry and the field line random walk limit. The
evaluation of the general transport parameter for two-dimensional turbulence
geometry, presented here for the first time for dynamical magnetic turbulence,
results in a drift coefficient valid for a magnetic power spectrum and
turbulence decay rate varying arbitrarily in wavenumber. For a two-component,
slab/two-dimensional turbulence model, numerical calculations are presented.
The new quasilinear drift, induced by the magnetic perturbations, is compared
with a standard drift expression related to the curvature and gradient of an
unperturbed heliospheric background magnetic field. The considerations
presented here offer a solid ground and natural explanation for the hitherto
puzzling observation that drift models often describe observations much better
when drift effects are reduced.Comment: 23 pages, 6 figures, accepted for publication in Ap
Avoiding Fire in the Operating Suite: An Intersection of Prevention and Common Sense
The operating room (OR) is a complex environment that involves large teams and multiple competing priorities, dynamically interacting throughout the entire course of a surgical procedure. The simultaneous presence of flammable substances, volatile gases, and the frequent use of electrical current results in a potentially dangerous combination. Operating room fire (ORF) is a rare but potentially devastating occurrence. To prevent this “never event”, it is critical for institutions to establish and follow proper fire safety protocols. Adherence to proven prevention strategies and awareness of associated risk factors will help reduce the incidence of this dreaded safety event. When ORF does occur despite strict adherence to established safety protocols, the entire OR team should know the steps required to contain and extinguish the fire as well as essential measures to minimize or avoid thermal injury. If injury does occur, it is important to recognize and treat it promptly. Appropriate and honest disclosure to all injured persons and their families should be made without delay. As with all serious patient safety events, regulatory reporting and root cause determinations must take place in accordance with applicable laws and regulations. The goal of patient safety champions at each institution should be the attainment of zero incidence of ORF
- …