7,432 research outputs found

    Dislocation-induced superfluidity in a model supersolid

    Full text link
    Motivated by recent experiments on the supersolid behavior of 4^4He, we study the effect of an edge dislocation in promoting superfluidity in a Bose crystal. Using Landau theory, we couple the elastic strain field of the dislocation to the superfluid density, and use a linear analysis to show that superfluidity nucleates on the dislocation before occurring in the bulk of the solid. Moving beyond the linear analysis, we develop a systematic perturbation theory in the weakly nonlinear regime, and use this method to integrate out transverse degrees of freedom and derive a one-dimensional Landau equation for the superfluid order parameter. We then extend our analysis to a network of dislocation lines, and derive an XY model for the dislocation network by integrating over fluctuations in the order parameter. Our results show that the ordering temperature for the network has a sensitive dependence on the dislocation density, consistent with numerous experiments that find a clear connection between the sample quality and the supersolid response.Comment: 10 pages, 6 figure

    Coulomb Drag in the Exciton Regime in Electron-Hole Bilayers

    Full text link
    We report electrical transport measurements on GaAs/AlGaAs based electron-hole bilayers. These systems are expected to make a transition from a pair of weakly coupled two-dimensional systems to a strongly coupled exciton system as the barrier between the layers is reduced. Once excitons form, phenomena such as Bose-Einstein condensation of excitons could be observed. In our devices, electrons and holes are confined in double quantum wells, and carriers in the devices are induced with top and bottom gates leading to variable density in each layer. Separate contact to each layer allows Coulomb drag transport measurements where current is driven in one layer while voltage is measured in the other. Coulomb drag is sensitive to interlayer coupling and has been predicted to provide a strong signature of exciton condensation. Drag measurement on EHBLs with a 30 nm barrier are consistent with drag between two weakly coupled 2D Fermi systems where the drag decreases as the temperature is reduced. When the barrier is reduced to 20 nm, we observe a consistent increase in the drag resistance as the temperature is reduced. These results indicate the onset of a much stronger coupling between the electrons and holes which leads to exciton formation and possibly phenomena related to exciton condensation.Comment: 12 pages, 3 figure

    The dynamics of dark solitons in a trapped superfluid Fermi gas

    Full text link
    We study soliton oscillations in a trapped superfluid Fermi gas across the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover. We derive an exact equation relating the phase jump across the soliton to its energy, and hence obtain an expression for the soliton period. Our analytic approach is supported by simulations of the time-dependent Bogoliubov-de Gennes equations, which show that the period dramatically increases as the soliton becomes shallower on the BCS side of the resonance. Finally, we propose an experimental protocol to test our predictions.Comment: 5 pages, 4 figure

    Superfluidity of electron-hole pairs in randomly inhomogeneous bilayer systems

    Full text link
    In bilayer systems electron-hole (e-h) pairs with spatially separated components (i.e., with electrons in one layer and holes in the other) can be condensed to a superfluid state when the temperature is lowered. This article deals with the influence of randomly distributed inhomogeneities on the superfluid properties of such bilayer systems in a strong perpendicular magnetic field. Ionized impurities and roughenings of the conducting layers are shown to decrease the superfluid current density of the e-h pairs. When the interlayer distance is smaller than or close to the magnetic length, the fluctuations of the interlayer distance considerably reduce the superfluid transition temperature.Comment: 13 pages, 3 figure

    Electromagnetic force density in dissipative isotropic media

    Full text link
    We derive an expression for the macroscopic force density that a narrow-band electromagnetic field imposes on a dissipative isotropic medium. The result is obtained by averaging the microscopic form for Lorentz force density. The derived expression allows us to calculate realistic electromagnetic forces in a wide range of materials that are described by complex-valued electric permittivity and magnetic permeability. The three-dimensional energy-momentum tensor in our expression reduces for lossless media to the so-called Helmholtz tensor that has not been contradicted in any experiment so far. The momentum density of the field does not coincide with any well-known expression, but for non-magnetic materials it matches the Abraham expression

    Metastable bound state of a pair of two-dimensional spatially separated electrons in anti-parallel magnetic fields

    Full text link
    We propose a new mechanism for binding of two equally charged carriers in a double-layer system subjected by a magnetic field of a special form. A field configuration for which the magnetic fields in adjacent layers are equal in magnitude and opposite in direction is considered. In such a field an additional integral of motion - the momentum of the pair P arises. For the case when in one layer the carrier is in the zero (n=0) Landau level while in the other layer - in the first (n=1) Landau level the dependence of the energy of the pair on its momentum E(P} is found. This dependence turns out to be nonmonotonic one : a local maximum and a local minimum appears, indicating the emergence of a metastable bound state of two carrier with the same sign of electrical charge.Comment: 7 page

    Correlations and superfluidity of a one-dimensional Bose gas in a quasiperiodic potential

    Full text link
    We consider the correlations and superfluid properties of a Bose gas in an external potential. Using a Bogoliubov scheme, we obtain expressions for the correlation function and the superfluid density in an arbitrary external potential. These expressions are applied to a one-dimensional system at zero temperature subject to a quasiperiodic modulation. The critical parameters for the Bose glass transition are obtained using two different criteria and the results are compared. The Lifshits glass is seen to be the limiting case for vanishing interactions.Comment: Published in PRA, typos correcte

    Dynamic equation for quantum Hall bilayers with spontaneous interlayer coherence: The low-density limit

    Full text link
    The bilayer systems exhibit the Bose-Einstein condensation of excitons that emerge due to Coulomb pairing of electrons belonging to one layer with the holes belonging to the other layer. Here we present the microscopic derivation of the dynamic equation for the condensate wave function at a low density of electron-hole (eāˆ’he-h) pairs in a strong magnetic field perpendicular to the layers and an electric field directed along the layers. From this equation we obtain the dispersion law for collective excitations of the condensate and calculate the electric charge of the vortex in the exciton condensate. The critical interlayer spacing, the excess of which leads to a collapse of the superfluid state, is estimated. In bilayer systems with curved conducting layers, the effective mass of the eāˆ’he-h pair becomes the function of the eāˆ’he-h pair coordinates, the regions arise, where the energy of the eāˆ’he-h pair is lowered (exciton traps), and lastly eāˆ’he-h pairs can gain the polarization in the basal plane. This polarization leads to the appearance of quantized vortices even at zero temperature.Comment: 8 page

    Test of the Ļ„-model of Boseā€“Einstein correlations and reconstruction of the source function in hadronic Z-boson decay at LEP

    Get PDF
    Boseā€“Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed in terms of various parametrizations. A good description is achieved using a LĆ©vy stable distribution in conjunction with a model where a particleā€™s momentum is correlated with its spaceā€“time point of production, the Ļ„-model. Using this description and the measured rapidity and transverse momentum distributions, the spaceā€“time evolution of particle emission in two-jet events is reconstructed. However, the elongation of the particle emission region previously observed is not accommodated in the Ļ„-model, and this is investigated using an ad hoc modification
    • ā€¦
    corecore