2,457 research outputs found

    Analysis of Bose-Einstein correlations in e+e- -> W+W- events including final state interactions

    Get PDF
    Recently DELPHI Collaboration reported new data on Bose-Einstein correlations (BEC) measured in e+e- -> W^+W^- events. Apparently no enhancement has been observed. We have analyzed these data including final state interactions (FSI) of both Coulomb and strong (s-wave) origin and found that there is enhancement in BEC but it is overshadowed by the FSI which are extremely important for those events. We have found the following values for the size of the interaction range beta and the degree of coherence lambda: beta=0.87 +/- 0.31fm and lambda=1.19 +/- 0.48, respectively.Comment: 7pages, 4 figure

    Electronic Structure of Three-Dimensional Superlattices Subject to Tilted Magnetic Fields

    Full text link
    Full quantum-mechanical description of electrons moving in 3D structures with unidirectional periodic modulation subject to tilted magnetic fields requires an extensive numerical calculation. To understand magneto-oscillations in such systems it is in many cases sufficient to use the quasi-classical approach, in which the zero-magnetic-field Fermi surface is considered as a magnetic-field-independent rigid body in k-space and periods of oscillations are related to extremal cross-sections of the Fermi surface cut by planes perpendicular to the magnetic-field direction. We point out cases where the quasi-classical treatment fails and propose a simple tight-binding fully-quantum-mechanical model of the superlattice electronic structure.Comment: 8 pages, 7 figures, RevTex, submitted to Phys. Rev.

    Nonextensive hydrodynamics for relativistic heavy-ion collisions

    Full text link
    The nonextensive one-dimensional version of a hydrodynamical model for multiparticle production processes is proposed and discussed. It is based on nonextensive statistics assumed in the form proposed by Tsallis and characterized by a nonextensivity parameter qq. In this formulation the parameter qq characterizes some specific form of local equilibrium which is characteristic for the nonextensive thermodynamics and which replaces the usual local thermal equilibrium assumption of the usual hydrodynamical models. We argue that there is correspondence between the perfect nonextensive hydrodynamics and the usual dissipative hydrodynamics. It leads to simple expression for dissipative entropy current and allows for predictions for the ratio of bulk and shear viscosities to entropy density, ζ/s\zeta/s and η/s\eta/s, to be made.Comment: Final version accepted for publication in Phys. Rev.

    Possible Verification of Tilted Anisotropic Dirac Cone in \alpha-(BEDT-TTF)_2 I_3 Using Interlayer Magnetoresistance

    Full text link
    It is proposed that the presence of a tilted and anisotropic Dirac cone can be verified using the interlayer magnetoresistance in the layered Dirac fermion system, which is realized in quasi-two-dimensional organic compound \alpha-(BEDT-TTF)_2 I_3. Theoretical formula is derived using the analytic Landau level wave functions and assuming local tunneling of electrons. It is shown that the resistivity takes the maximum in the direction of the tilt if anisotropy of the Fermi velocity of the Dirac cone is small. The procedure is described to determine the parameters of the tilt and anisotropy.Comment: 4 pages, 4 figures, corrected Fig.

    Relativistic dissipative hydrodynamics with extended matching conditions for ultra-relativistic heavy-ion collisions

    Full text link
    Recently we proposed a novel approach to the formulation of relativistic dissipative hydrodynamics by extending the so-called matching conditions in the Eckart frame [Phys. Rev. {\bf C 85}, (2012) 14906]. We extend this formalism further to the arbitrary Lorentz frame. We discuss the stability and causality of solutions of fluid equations which are obtained by applying this formulation to the Landau frame, which is more relevant to treat the fluid produced in ultra-relativistic heavy-ion collisions. We derive equations of motion for a relativistic dissipative fluid with zero baryon chemical potential and show that linearized equations obtained from them are stable against small perturbations. It is found that conditions for a fluid to be stable against infinitesimal perturbations are equivalent to imposing restrictions that the sound wave, csc_s, propagating in the fluid, must not exceed the speed of light cc, i.e., cs<cc_s < c. This conclusion is equivalent to that obtained in the previous paper using the Eckart frame [Phys. Rev. {\bf C 85}, (2012) 14906].Comment: 2nd version. Typos corrected. 7 pages. Contribution to The European Physical Journal A (Hadrons and Nuclei) topical issue about 'Relativistic Hydro- and Thermodynamics in Nuclear Physics

    A new technique using a rubber balloon in emergency second trimester cerclage for fetal membrane prolapse

    Get PDF
    The definitive version is available at www.blackwell-synergy.comArticleJOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH. 34(6):935-940 (2008)journal articl
    corecore