135 research outputs found
DNA Methylation of the ABO Promoter Underlies Loss of ABO Allelic Expression in a Significant Proportion of Leukemic Patients
Background: Loss of A, B and H antigens from the red blood cells of patients with myeloid malignancies is a frequent occurrence. Previously, we have reported alterations in ABH antigens on the red blood cells of 55% of patients with myeloid malignancies. Methodology/Principal Findings: To determine the underlying molecular mechanisms of this loss, we assessed ABO allelic expression in 21 patients with ABH antigen loss previously identified by flow cytometric analysis as well as an additional 7 patients detected with ABH antigen changes by serology. When assessing ABO mRNA allelic expression, 6/12 (50%) patients with ABH antigen loss detected by flow cytometry and 5/7 (71%) of the patients with ABH antigen loss detected by serology had a corresponding ABO mRNA allelic loss of expression. We examined the ABO locus for copy number and DNA methylation alterations in 21 patients, 11 with loss of expression of one or both ABO alleles, and 10 patients with no detectable allelic loss of ABO mRNA expression. No loss of heterozygosity (LOH) at the ABO locus was observed in these patients. However in 8/11 (73%) patients with loss of ABO allelic expression, the ABO promoter was methylated compared with 2/10 (20%) of patients with no ABO allelic expression loss (P = 0.03). Conclusions/Significance: We have found that loss of ABH antigens in patients with hematological malignancies is associated with a corresponding loss of ABO allelic expression in a significant proportion of patients. Loss of ABO allelic expression was strongly associated with DNA methylation of the ABO promoter.Tina Bianco-Miotto, Damian J. Hussey, Tanya K. Day, Denise S. O'Keefe and Alexander Dobrovi
Selection of microsatellite markers for bladder cancer diagnosis without the need for corresponding blood
Microsatellite markers are used for loss-of-heterozygosity, allelic imbalance and clonality analyses in cancers. Usually, tumor DNA is compared to corresponding normal DNA. However, normal DNA is not always available and can display aberrant allele ratios due to copy number variations in the genome. Moreover, stutter peaks may complicate the analysis. To use microsatellite markers for diagnosis of recurrent bladder cancer, we aimed to select markers without stutter peaks and a constant ratio between alleles, thereby avoiding the need for a control DNA sample. We investigated 49 microsatellite markers with tri- and tetranucleotide repeats in regions commonly lost in bladder cancer. Based on analysis of 50 blood DNAs the 12 best performing markers were selected with few stutter peaks and a constant ratio between peaks heights. Per marker upper and lower cut off values for allele ratios were determined. LOH of the markers was observed in 59/104 tumor DNAs. We then determined the sensitivity of the marker panel for detection of recurrent bladder cancer by assaying 102 urine samples of these patients. Sensitivity was 63% when patients were stratified for LOH in their primary tumors. We demonstrate that up-front selection of microsatellite markers obliterates the need for a corresponding blood sample. For diagnosis of bladder cancer recurrences in urine this significantly reduces costs. Moreover, this approach facilitates retrospective analysis of archival tumor samples for allelic imbalance
High frequency of TTK mutations in microsatellite-unstable colorectal cancer and evaluation of their effect on spindle assembly checkpoint
Frameshift mutations frequently accumulate in microsatellite-unstable colorectal cancers (MSI CRCs) typically leading to downregulation of the target genes due to nonsense-mediated messenger RNA decay. However, frameshift mutations that occur in the 3' end of the coding regions can escape decay, which has largely been ignored in previous works. In this study, we characterized nonsense-mediated decay-escaping frameshift mutations in MSI CRC in an unbiased, genome wide manner. Combining bioinformatic search with expression profiling, we identified genes that were predicted to escape decay after a deletion in a microsatellite repeat. These repeats, located in 258 genes, were initially sequenced in 30 MSI CRC samples. The mitotic checkpoint kinase TTK was found to harbor decay-escaping heterozygous mutations in exon 22 in 59% (105/179) of MSI CRCs, which is notably more than previously reported. Additional novel deletions were found in exon 5, raising the mutation frequency to 66%. The exon 22 of TTK contains an A(9)-G(4)-A(7) locus, in which the most common mutation was a mononucleotide deletion in the A(9) (c.2560delA). When compared with identical non-coding repeats, TTK was found to be mutated significantly more often than expected without selective advantage. Since TTK inhibition is known to induce override of the mitotic spindle assembly checkpoint (SAC), we challenged mutated cancer cells with the microtubule-stabilizing drug paclitaxel. No evidence of checkpoint weakening was observed. As a conclusion, heterozygous TTK mutations occur at a high frequency in MSI CRCs. Unexpectedly, the plausible selective advantage in tumourigenesis does not appear to be related to SAC
Gene expression profiling of noninvasive primary urothelial tumours using microarrays
At present, the mechanism leading to bladder cancer is still poorly understood, and our knowledge about early events in tumorigenesis is limited. This study describes the changes in gene expression occurring during the neoplastic transition from normal bladder urothelium to primary Ta tumours. Using DNA microarrays, we identified novel differentially expressed genes in Ta tumours compared to normal bladder, and genes that were altered in high-grade tumours. Among the mostly changed genes between normal bladder and Ta tumours, we found genes related to the cytoskeleton (keratin 7 and syndecan 1), and transcription (high mobility group AT-hook 1). Altered genes in high-grade tumours were related to cell cycle (cyclin-dependent kinase 4) and transcription (jun d proto-oncogene). Furthermore, we showed the presence of high keratin 7 transcript expression in bladder cancer, and Western blotting analysis revealed three major molecular isoforms of keratin 7 in the tissues. These could be detected in urine sediments from bladder tumour patients
Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci
Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10 -6) and rs8057927 in CDH13 (P=1.39 × 10 -5). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10 -7). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10 -7). This signal was replicated in the follow-up analysis (P=2.3 × 10 -2). Significant interaction with maternal CMV infection was found for rs7902091 (P SNP × CMV =7.
T cell subpopulations in lymph nodes may not be predictive of patient outcome in colorectal cancer
<p>Abstract</p> <p>Background</p> <p>The immune response has been proposed to be an important factor in determining patient outcome in colorectal cancer (CRC). Previous studies have concentrated on characterizing T cell populations in the primary tumour where T cells with regulatory effect (Foxp3+ Tregs) have been identified as both enhancing and diminishing anti-tumour immune responses. No previous studies have characterized the T cell response in the regional lymph nodes in CRC.</p> <p>Methods</p> <p>Immunohistochemistry was used to analyse CD4, CD8 or Foxp3+ T cell populations in the regional lymph nodes of patients with stage II CRC (n = 31), with (n = 13) or without (n = 18) cancer recurrence after 5 years of follow up, to determine if the priming environment for anti-tumour immunity was associated with clinical outcome.</p> <p>Results</p> <p>The proportions of CD4, CD8 or Foxp3+ cells in the lymph nodes varied widely between and within patients, and there was no association between T cell populations and cancer recurrence or other clinicopathological characteristics.</p> <p>Conclusions</p> <p>These data indicate that frequency of these T cell subsets in lymph nodes may not be a useful tool for predicting patient outcome.</p
Overexpressed vs mutated Kras in murine fibroblasts: a molecular phenotyping study
Ras acts in signalling pathways regulating the activity of multiple cellular functions including cell proliferation, differentiation, and apoptosis. Amino-acid exchanges at position 12, 13, or 61 of the Kras gene convert the proto-oncogene into an activated oncogene. Until now, a direct comparison of genome-wide expression profiling studies of Kras overexpression and different Kras mutant forms in a single assay system has not been carried out. In our study, we focused on the direct comparison of global gene expression effects caused by mutations in codon 12 or 13 of the Kras gene and Kras overexpression in murine fibroblasts. We determined Kras cellular mRNA, Ras protein and activated Ras protein levels. Further, we compared our data to the proteome analysis of the same transfected cell lines. Both overexpression and mutations of Kras lead to common altered gene expression patterns. Only two genes, Lox and Col1a1, were reversely regulated in the Kras transfectants. They may contribute to the higher aggressiveness of the Kras codon 12 mutation in tumour progression. The functional annotation of differentially expressed genes revealed a high frequency of proteins involved in tumour growth and angiogenesis. These data further support the important role of these genes in tumour-associated angiogenesis
Histo-Blood Group Gene Polymorphisms as Potential Genetic Modifiers of Infection and Cystic Fibrosis Lung Disease Severity
The pulmonary phenotype in cystic fibrosis (CF) is variable; thus, environmental and genetic factors likely contribute to clinical heterogeneity. We hypothesized that genetically determined ABO histo-blood group antigen (ABH) differences in glycosylation may lead to differences in microbial binding by airway mucus, and thus predispose to early lung infection and more severe lung disease in a subset of patients with CF. infection in the severe or mild groups. Multivariate analyses of other clinical phenotypes, including gender, asthma, and meconium ileus demonstrated no differences between groups based on ABH type. infection, nor was there any association with other clinical phenotypes in a group of 808 patients homozygous for the ΔF508 mutation
- …