178 research outputs found

    Measuring Perceived Trust in XAI-Assisted Decision-Making by Eliciting a Mental Model

    Get PDF
    This empirical study proposes a novel methodology to measure users' perceived trust in an Explainable Artificial Intelligence (XAI) model. To do so, users' mental models are elicited using Fuzzy Cognitive Maps (FCMs). First, we exploit an interpretable Machine Learning (ML) model to classify suspected COVID-19 patients into positive or negative cases. Then, Medical Experts' (MEs) conduct a diagnostic decision-making task based on their knowledge and then prediction and interpretations provided by the XAI model. In order to evaluate the impact of interpretations on perceived trust, explanation satisfaction attributes are rated by MEs through a survey. Then, they are considered as FCM's concepts to determine their influences on each other and, ultimately, on the perceived trust. Moreover, to consider MEs' mental subjectivity, fuzzy linguistic variables are used to determine the strength of influences. After reaching the steady state of FCMs, a quantified value is obtained to measure the perceived trust of each ME. The results show that the quantified values can determine whether MEs trust or distrust the XAI model. We analyze this behavior by comparing the quantified values with MEs' performance in completing diagnostic tasks

    Measuring Perceived Trust in XAI-Assisted Decision-Making by Eliciting a Mental Model

    Full text link
    This empirical study proposes a novel methodology to measure users' perceived trust in an Explainable Artificial Intelligence (XAI) model. To do so, users' mental models are elicited using Fuzzy Cognitive Maps (FCMs). First, we exploit an interpretable Machine Learning (ML) model to classify suspected COVID-19 patients into positive or negative cases. Then, Medical Experts' (MEs) conduct a diagnostic decision-making task based on their knowledge and then prediction and interpretations provided by the XAI model. In order to evaluate the impact of interpretations on perceived trust, explanation satisfaction attributes are rated by MEs through a survey. Then, they are considered as FCM's concepts to determine their influences on each other and, ultimately, on the perceived trust. Moreover, to consider MEs' mental subjectivity, fuzzy linguistic variables are used to determine the strength of influences. After reaching the steady state of FCMs, a quantified value is obtained to measure the perceived trust of each ME. The results show that the quantified values can determine whether MEs trust or distrust the XAI model. We analyze this behavior by comparing the quantified values with MEs' performance in completing diagnostic tasks.Comment: Accepted in IJCAI 2023 Workshop on Explainable Artificial Intelligence (XAI

    Correlation-driven electronic nematicity in the Dirac semimetal BaNiS2

    Full text link
    In BaNiS2 a Dirac nodal-line band structure exists within a two-dimensional Ni square lattice system, in which significant electronic correlation effects are anticipated. Using scanning tunneling microscopy, we discover signs of correlated-electron behavior, namely electronic nematicity appearing as a pair of C2-symmetry striped patterns in the local density-of-states at ~60 meV above the Fermi energy. In observations of quasiparticle interference, as well as identifying scattering between Dirac cones, we find that the striped patterns in real space stem from a lifting of degeneracy among electron pockets at the Brillouin zone boundary. We infer a momentum-dependent energy shift with d-form factor, which we model numerically within a density wave equation framework that considers spin-fluctuation-driven nematicity. This suggests an unusual mechanism driving the nematic instability, stemming from only a small perturbation to the Fermi surface, in a system with very low density of states at the Fermi energy. The Dirac points lie at nodes of the d-form factor, and are almost unaffected by it. These results highlight BaNiS2 as a unique material in which Dirac electrons and symmetry-breaking electronic correlations coexist.Comment: 11 pages, 5 figures (plus 6 pages, 4 figures

    Coherence effect in a two-band superconductor: Application to iron pnictides

    Full text link
    From a theoretical point of view, we propose an experimental method to determine the pairing symmetry of iron pnictides. We focus on two kinds of pairing symmetries, s+−s_{+-} and s++s_{++}, which are strong candidates for the pairing symmetry of iron pnictides. For each of these two symmetries, we calculate both the density and spin response functions by using the two-band BCS model within the one-loop approximation. As a result, a clear difference is found between the s+−s_{+-}- and s++s_{++}-wave states in the temperature dependence of the response functions at nesting vector Q\bf{Q}, which connects the hole and electron Fermi surfaces. We point out that this difference comes from the coherence effect in the two-band superconductor. We suggest that the pairing symmetry could be clarified by observing the temperature dependence of both the density and spin structure factors at the nesting vector Q\bf{Q} in neutron scattering measurements.Comment: 15 pages, 7 figures, 1 tabl

    Study of Ni-doping Effect of Specific Heat and Transport Properties for LaFe1-yNiyAsO0.89F0.11

    Full text link
    Specific heats and transport quantities of the LaFe1-yNiyAsO0.89F0.11 system have been measured, and the results are discussed together with those reported previously by our group mainly for LaFe1-yCoyAsO0.89F0.11 and LaFeAsO0.89-xF0.11+x systems. The y dependence of the electronic specific heat coefficient gamma can basically be understood by using the rigid-band picture, where Ni ions provide 2 electrons to the host conduction bands and behave as nonmagnetic impurities. The superconducting transition temperature Tc of LaFe1-yNiyAsO0.89F0.11 becomes zero, as the carrier density p (=2y+0.11) doped to LaFeAsO reaches its critical value p_c_ ~0.2. This p_c_ value of ~0.2 is commonly observed for LaFe1-yCoyAsO0.89F0.11 and LaFeAsO0.89-xF0.11+x systems, in which the relations p = x+0.11 and p = y+0.11 hold, respectively. As we pointed out previously, the critical value corresponds to the disappearance of the hole-Fermi surface. These results indicate that the carrier number solely determines the Tc value. We have not observed appreciable effects of pair breaking, which originates from the nonmagnetic impurity scattering of conduction electrons and strongly suppresses T_c_ values of systems with sign-reversing of the order parameter over the Fermi surface(s). On the basis of the results, the so-called s_+-_ symmetry of the order parameter with the sign-reversing is excluded.Comment: 4 pages, 7 figures, submitted to J. Phys. Soc. Jpn, (modified version

    Simple Real-Space Picture of Nodeless and Nodal s-wave Gap Functions in Iron Pnictide Superconductors

    Full text link
    We propose a simple way to parameterize the gap function in iron pnictides. The key idea is to use orbital representation, not band representation, and to assume real-space short-range pairing. Our parameterization reproduces fairly well the structure of gap function obtained in microscopic calculation. At the same time the present parameterization is simple enough to obtain an intuitive picture and to develop a phenomenological theory. We also discuss simplification of the treatment of the superconducting state.Comment: 4 page

    Orbital Order, Structural Transition and Superconductivity in Iron Pnictides

    Full text link
    We investigate the 16-band d-p model for iron pnictide superconductors in the presence of the electron-phonon coupling g with the orthorhombic mode which is crucial for reproducing the recently observed ultrasonic softening. Within the RPA, we obtain the ferro-orbital order below TQ which induces the tetragonal-orthorhombic structural transition at Ts = TQ, together with the stripe-type antiferromagnetic order below TN. Near the phase transitions, the system shows the s++ wave superconductivity due to the orbital fluctuation for a large g case with TQ > TN, while the s+- wave due to the magnetic fluctuation for a small g case with TQ < TN. The former case is consistent with the phase diagram of doped iron pnictides with Ts > TN.Comment: 5 pages, 5 figures, minor changes, published in J. Phys. Soc. Jp

    Chemical Pressure and Physical Pressure in BaFe_2(As_{1-x}P_{x})_2

    Full text link
    Measurements of the superconducting transition temperature, T_c, under hydrostatic pressure via bulk AC susceptibility were carried out on several concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The pressure dependence of unsubstituted BaFe_2As_2, phosphorous concentration dependence of BaFe_2(As_{1-x}P_x)_2, as well as the pressure dependence of BaFe_2(As_{1-x}P_x)_2 all point towards an identical maximum T_c of 31 K. This demonstrates that phosphorous substitution and physical pressure result in similar superconducting phase diagrams, and that phosphorous substitution does not induce substantial impurity scattering.Comment: 5 pages, 4 figures, to be published in Journal of the Physical Society of Japa
    • …
    corecore