217 research outputs found

    Study of phase diagram and superconducting states in LaFeAsO1x_{1-x}Hx_x based on the multiorbital extended Hubbard model

    Full text link
    To understand the recently established unique magnetic and superconducting phase diagram of LaFeAsO1x_{1-x}Hx_x, we analyze the realistic multiorbital tight-binding model for x=00.4x=0 \sim 0.4 beyond the rigid band approximation. Both the spin and orbital susceptibilities are calculated in the presence of the Coulomb and charge quadrupole interactions. It is found that both orbital and spin fluctuations strongly develop at both x0x \sim 0 and 0.4, due to the strong violation of the rigid band picture in LaFeAsO1x_{1-x}Hx_x. Based on this result, we discuss the experimental phase diagram, especially the double-dome superconducting phase. Moreover, we show that the quadrupole interaction is effectively produced by the vertex correction due to Coulomb interaction, resulting in the mutual development of spin and orbital fluctuations.Comment: 5 pages, 5 figures, to be published in Phys. Rev. B (Rapid Communications

    Simple Real-Space Picture of Nodeless and Nodal s-wave Gap Functions in Iron Pnictide Superconductors

    Full text link
    We propose a simple way to parameterize the gap function in iron pnictides. The key idea is to use orbital representation, not band representation, and to assume real-space short-range pairing. Our parameterization reproduces fairly well the structure of gap function obtained in microscopic calculation. At the same time the present parameterization is simple enough to obtain an intuitive picture and to develop a phenomenological theory. We also discuss simplification of the treatment of the superconducting state.Comment: 4 page

    Orbital Order, Structural Transition and Superconductivity in Iron Pnictides

    Full text link
    We investigate the 16-band d-p model for iron pnictide superconductors in the presence of the electron-phonon coupling g with the orthorhombic mode which is crucial for reproducing the recently observed ultrasonic softening. Within the RPA, we obtain the ferro-orbital order below TQ which induces the tetragonal-orthorhombic structural transition at Ts = TQ, together with the stripe-type antiferromagnetic order below TN. Near the phase transitions, the system shows the s++ wave superconductivity due to the orbital fluctuation for a large g case with TQ > TN, while the s+- wave due to the magnetic fluctuation for a small g case with TQ < TN. The former case is consistent with the phase diagram of doped iron pnictides with Ts > TN.Comment: 5 pages, 5 figures, minor changes, published in J. Phys. Soc. Jp

    Chemical Pressure and Physical Pressure in BaFe_2(As_{1-x}P_{x})_2

    Full text link
    Measurements of the superconducting transition temperature, T_c, under hydrostatic pressure via bulk AC susceptibility were carried out on several concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The pressure dependence of unsubstituted BaFe_2As_2, phosphorous concentration dependence of BaFe_2(As_{1-x}P_x)_2, as well as the pressure dependence of BaFe_2(As_{1-x}P_x)_2 all point towards an identical maximum T_c of 31 K. This demonstrates that phosphorous substitution and physical pressure result in similar superconducting phase diagrams, and that phosphorous substitution does not induce substantial impurity scattering.Comment: 5 pages, 4 figures, to be published in Journal of the Physical Society of Japa

    Coherence effect in a two-band superconductor: Application to iron pnictides

    Full text link
    From a theoretical point of view, we propose an experimental method to determine the pairing symmetry of iron pnictides. We focus on two kinds of pairing symmetries, s+s_{+-} and s++s_{++}, which are strong candidates for the pairing symmetry of iron pnictides. For each of these two symmetries, we calculate both the density and spin response functions by using the two-band BCS model within the one-loop approximation. As a result, a clear difference is found between the s+s_{+-}- and s++s_{++}-wave states in the temperature dependence of the response functions at nesting vector Q\bf{Q}, which connects the hole and electron Fermi surfaces. We point out that this difference comes from the coherence effect in the two-band superconductor. We suggest that the pairing symmetry could be clarified by observing the temperature dependence of both the density and spin structure factors at the nesting vector Q\bf{Q} in neutron scattering measurements.Comment: 15 pages, 7 figures, 1 tabl

    Spin-Dependent Mass Enhancement under Magnetic Field in the Periodic Anderson Model

    Full text link
    In order to study the mechanism of the mass enhancement in heavy fermion compounds in the presence of magnetic field, we study the periodic Anderson model using the fluctuation exchange approximation. The resulting value of the mass enhancement factor z^{-1} can become up to 10, which is significantly larger than that in the single-band Hubbard model. We show that the difference between the magnitude of the mass enhancement factor of up spin (minority spin) electrons z^{-1}_up and that of down spin (majority spin) electrons z^{-1}_down increases by the applied magnetic field B//z, which is consistent with de Haas-van Alphen measurements for CeCoIn_5, CeRu_2Si_2 and CePd_2Si_2. We predict that z^{-1}_up >z^{-1}_down in many Ce compounds, whereas z^{-1}_up < z^{-1}_down in Yb compounds.Comment: 5 pages, 4 figure

    Single Impurity Problem in Iron-Pnictide Superconductors

    Full text link
    Single impurity problem in iron-pnictide superconductors is investigated by solving Bogoliubov-de Gennes (BdG) equation in the five-orbital model, which enables us to distinguish s+_{+-} and s++_{++} superconducting states. We construct a five-orbital model suitable to BdG analysis. This model reproduces the results of random phase approximation in the uniform case. Using this model, we study the local density of states around a non-magnetic impurity and discuss the bound-state peak structure, which can be used for distinguishing s+_{+-} and s++_{++} states. A bound state with nearly zero-energy is found for the impurity potential I1.0I\sim 1.0 eV, while the bound state peaks stick to the gap edge in the unitary limit. Novel multiple peak structure originated from the multi-orbital nature of the iron pnictides is also found.Comment: 5 page

    Superconductivity induced by inter-band nesting in the three-dimensional honeycomb lattice

    Full text link
    In order to study whether the inter-band nesting can favor superconductivity arising from electron-electron repulsion in a three-dimensional system, we have looked at the repulsive Hubbard model on a stack of honeycomb (i.e., non-Bravais) lattices with the FLEX method, partly motivated by the superconductivity observed in MgB2. By systematically changing the shape of Fermi surface with varied band filling n and the third-direction hopping, we have found that the pair scattering across the two-bands is indeed found to give rise to gap functions that change sign across the bands and behave as an s- or d-wave within each band. This implies (a) the electron repulsion can assist gapful pairing when a phonon-mechanism pairing exists, and (b) the electron repulsion alone, when strong enough, can give rise to a d-wave-like pairing, which should be, for a group-theoretic reason, a time-reversal broken d+id with point nodes in the gap

    Study of Ni-doping Effect of Specific Heat and Transport Properties for LaFe1-yNiyAsO0.89F0.11

    Full text link
    Specific heats and transport quantities of the LaFe1-yNiyAsO0.89F0.11 system have been measured, and the results are discussed together with those reported previously by our group mainly for LaFe1-yCoyAsO0.89F0.11 and LaFeAsO0.89-xF0.11+x systems. The y dependence of the electronic specific heat coefficient gamma can basically be understood by using the rigid-band picture, where Ni ions provide 2 electrons to the host conduction bands and behave as nonmagnetic impurities. The superconducting transition temperature Tc of LaFe1-yNiyAsO0.89F0.11 becomes zero, as the carrier density p (=2y+0.11) doped to LaFeAsO reaches its critical value p_c_ ~0.2. This p_c_ value of ~0.2 is commonly observed for LaFe1-yCoyAsO0.89F0.11 and LaFeAsO0.89-xF0.11+x systems, in which the relations p = x+0.11 and p = y+0.11 hold, respectively. As we pointed out previously, the critical value corresponds to the disappearance of the hole-Fermi surface. These results indicate that the carrier number solely determines the Tc value. We have not observed appreciable effects of pair breaking, which originates from the nonmagnetic impurity scattering of conduction electrons and strongly suppresses T_c_ values of systems with sign-reversing of the order parameter over the Fermi surface(s). On the basis of the results, the so-called s_+-_ symmetry of the order parameter with the sign-reversing is excluded.Comment: 4 pages, 7 figures, submitted to J. Phys. Soc. Jpn, (modified version
    corecore