3,878 research outputs found

    The 12CO/13CO ratio in AGB stars of different chemical type-Connection to the 12C/13C ratio and the evolution along the AGB

    Full text link
    The aim of this paper is to investigate the evolution of the 12C/13C ratio along the AGB through the circumstellar 12CO/13CO ratio. This is the first time a sample including a significant number of M- and S-type stars is analysed together with a carbon-star sample of equal size, making it possible to investigate trends among the different types and establish evolutionary effects. The circumstellar 12CO/13CO abundance ratios are estimated through a detailed radiative transfer analysis of single-dish radio line emission observations. First, the 12CO radiative transfer is solved, assuming an abundance (dependent on the chemical type of the star), to give the physical parameters of the gas, i.e. mass-loss rate, gas expansion velocity, and gas temperature distribution. Then, the 13CO radiative transfer is solved using the results of the 12CO model giving the 13CO abundance. Finally, the 12CO/13CO abundance ratio is calculated. The circumstellar 12CO/13CO abundance ratio differs between the three spectral types. This is consistent with what is expected from stellar evolutionary models assuming that the spectral types constitute an evolutionary sequence; however, this is the first time this has been shown observationally for a relatively large sample covering all three spectral types. The median value of the 13CO abundance in the inner circumstellar envelope is 1.6x10^-5, 2.3x10^-5, and 3.0x10^-5 for the M-type, S-type, and carbon stars of the sample, respectively, corresponding to 12CO/13CO abundance ratios of 13, 26, and 34, respectively. Interestingly, the abundance ratio spread of the carbon stars is much larger than for the M- and S-type stars, even when excluding J-type carbon stars, in line with what could be expected from evolution on the AGB. We find no correlation between the isotopologue ratio and the mass-loss rate, as would be expected if both increase as the star evolves.Comment: 11 pages, 5 figures, accepted for publication in A&

    The physics and chemistry of circumstellar envelopes of S-stars on the AGB

    Full text link
    The S-stars have been suggested to be a brief transitional phase as stars evolve from oxygen-rich M-type stars into carbon stars, through the dredge up of carbon from He-shell burning. As possible transition objects, S-stars might help achieve a deeper understanding of the chemical evolution as a star ascends the AGB, as well as shed more light on the mass-loss mechanism. We have initiated a large survey of 40 S-stars to observe line emission in common molecules such as CO, SiO, HCN, CS and SiS. Detailed radiative transfer modelling of multi-transition CO radio line observations towards a sample of 40 S-stars shows that the mass-loss rate distribution of S-stars is consistent with those found for M-type AGB stars and carbon stars. Initial results from modelling of the circumstellar SiO emission are also presented.Comment: 2 pages, 1 figure, to appear in Proceedings from 'Why Galaxies Care About AGB stars

    The mass-loss rates and molecular abundances of S-type AGB stars

    Full text link
    The S-type stars are believed to have a C/O-ratio close to unity (within a few percent). They are considered to represent an intermediate evolutionary stage as AGB stars evolve from oxygen-rich M-type stars into carbon stars. As possible transition objects the S-type stars could give important clues to the mass-loss mechanism(s) and to the chemical evolution along the AGB. Using observations of circumstellar radio line emission in combination with a detailed radiative transfer analysis, we have estimated mass-loss rates and abundances of chemically important molecules (SiO, HCN) for a sample of 40 S-type AGB stars. The results will be compared to previous results for M-type and carbon stars.Comment: To appear in the proceedings of Why Galaxies Care About AGB stars I

    Mass Loss Evolution and the Formation of Detached Shells around TP-AGB Stars

    Full text link
    The origin of the so called 'detached shells' around AGB stars is not fully understood, but two common hypotheses state that these shells form either through the interaction of distinct wind phases or an eruptive mass loss associated with a He-shell flash. We present a model of the formation of detached shells around thermal pulse asymptotic giant branch (TP-AGB) stars, based on detailed modelling of mass loss and stellar evolution, leading to a combination of eruptive mass loss and wind interaction. The purpose of this paper is first of all to connect stellar evolution with wind and mass loss evolution and demonstrate its consistency with observations, but also to show how thin detached shells around TP-AGB stars can be formed. Previous attempts to link mass loss evolution with the formation of detached shells were based on approximate prescriptions for the mass loss and have not included detailed modelling of the wind formation as we do here. (abridged)Comment: 16 pages, 15 figures. Accepted for publication in Astronomy & Astrophysic

    Correlations in Nuclear Masses

    Full text link
    It was recently suggested that the error with respect to experimental data in nuclear mass calculations is due to the presence of chaotic motion. The theory was tested by analyzing the typical error size. A more sensitive quantity, the correlations of the mass error between neighboring nuclei, is studied here. The results provide further support to this physical interpretation.Comment: 4 pages, 2 figure

    Measuring wheel/rail contact stresses using ultrasound

    Get PDF
    The investigation of contact area and pressure distribution in a wheel/rail contact is essential information required in fatigue and wear calculations to determine design life, regrinding requirements, and maintenance schedules. The aim of this work was to use ultrasound to non-destructively determine wheel/rail contact pressures. Three different contacts were investigated those resulting from; un-used, sand damaged, and worn wheel/rail specimens. A wheel/rail interface behaves like a spring. If the pressure is high the interface is very stiff, with few air gaps, and allows the transmission of an ultrasonic sound wave. If the pressure is low, interfacial stiffness is low and almost all the ultrasound is reflected. A spring model was used to determine maps of contact stiffness from wheel/rail ultrasonic reflection data. Pressure was then determined using a calibration experiment. Separate calibrations were performed for each of the three sets of wheel/rail specimens investigated. Measured contact pressure distributions are compared to those determined using analytical and computer bases numerical techniques

    Experimental characterization of wheel-rail contact patch evolution

    Get PDF
    The contact area and pressure distribution in a wheel/rail contact is essential information required in any fatigue or wear calculations to determine design life, re-grinding, and maintenance schedules. As wheel or rail wear or surface damage takes place the contact patch size and shape will change. This leads to a redistribution of the contact stresses. The aim of this work was to use ultrasound to nondestructively quantify the stress distribution in new, worn, and damaged wheel-rail contacts. The response of a wheel/rail interface to an ultrasonic wave can be modeled as a spring. If the contact pressure is high the interface is very stiff, with few air gaps, and allows the transmission of an ultrasonic sound wave. If the pressure is low, interfacial stiffness is lower and almost all the ultrasound is reflected. A quasistatic spring model was used to determine maps of contact stiffness from wheel/rail ultrasonic reflection data. Pressure was then determined using a parallel calibration experiment. Three different contacts were investigated; those resulting from unused, worn, and sand damaged wheel and rail specimens. Measured contact pressure distributions are compared to those determined using elastic analytical and numerical elastic-plastic solutions. Unused as-machined contact surfaces had similar contact areas to predicted elastic Hertzian solutions. However, within the contact patch, the numerical models better reproduced the stress distribution, as they incorporated real surface roughness effects. The worn surfaces were smoother and more conformal, resulting in a larger contact patch and lower contact stress. Sand damaged surfaces were extremely rough and resulted in highly fragmented contact regions and high local contact stress. Copyright © 2006 by ASME

    Mesoscopic Fluctuations of the Pairing Gap

    Full text link
    A description of mesoscopic fluctuations of the pairing gap in finite-sized quantum systems based on periodic orbit theory is presented. The size of the fluctuations are found to depend on quite general properties. We distinguish between systems where corresponding classical motion is regular or chaotic, and describe in detail fluctuations of the BCS gap as a function of the size of the system. The theory is applied to different mesoscopic systems: atomic nuclei, metallic grains, and ultracold fermionic gases. We also present a detailed description of pairing gap variation with particle number for nuclei based on a deformed cavity potential.Comment: Conference Proceeding of Mesoscopic Workshop WNMP0
    corecore