149 research outputs found
Evolution of the electronic structure across the filling-control and bandwidth-control metal-insulator transitions in pyrochlore-type Ru oxides
We have performed photoemission and soft x-ray absorption studies of
pyrochlore-type Ru oxides, namely, the filling-control system
SmCaRuO and the bandwidth-control system
SmBiRuO, which show insulator-to-metal transition with
increasing Ca and Bi concentration, respectively. Core levels and the O 2
valence band in SmCaRuO show almost the same amount of
monotonous upward energy shifts with Ca concentration, which indicates that the
chemical potential is shifted downward due to hole doping. The Ru 4 band in
SmCaRuO is also shifted toward the Fermi level () with
hole doping and the density of states (DOS) at increases. The core levels
in SmBiRuO, on the other hand, do not show clear energy
shifts except for the Ru 3 core level, whose line shape change also reflects
the increase of metallic screening with Bi concentration. We observe pronounced
spectral weight transfer from the incoherent to the coherent parts of the Ru 4d
band with Bi concentration, which is expected for a bandwidth-control
Mott-Hubbard system. The increase of the DOS at is more abrupt in the
bandwidth-control SmBiRuO than in the filling-control
SmCaRuO, in accordance with a recent theoretical
prediction. Effects of charge transfer between the Bi 6 band and the Ru
4 band are also discussed.Comment: 11 pages, 6 figure
MOCK-UP TEST OF REMOTE CONTROLLED DISMANTLING APPARATUS FOR LARGE-SIZED VESSELS
ABSTRACT The remote dismantling apparatus, which is equipped with multi-units for functioning of washing, cutting, collection of cut pieces and so on, has been constructed to dismantle the large-sized vessels in the JAERI's Reprocessing Test Facility (JRTF). The apparatus has five-axis movement capability and its operation is performed remotely. The mock-up tests were performed to evaluate the applicability of the apparatus to actual dismantling activities by using the mock-ups of LV-3 and LV-5 in the facility. It was confirmed that each unit was satisfactory functioned by remote operation. Efficient procedure for dismantling the large-sized vessel was studied and various data were obtained from the mock-up tests. This apparatus was found to be applicable for the actual dismantling activity in JRTF
Phase Change Observed in Ultrathin Ba0.5Sr0.5TiO3 Films by in-situ Resonant Photoemission Spectroscopy
Epitaxial Ba0.5Sr0.5TiO3 thin films were prepared on Nb-doped SrTiO3
(100)substrates by the pulsed laser deposition technique, and were studied by
measuring the Ti 2p - 3d resonant photoemission spectra in the valence-band
region as a function of film thickness, both at room temperature and low
temperature. Our results demonstrated an abrupt variation in the spectral
structures between 2.8 nm (~7 monolayers) and 2.0 nm (~5 monolayers)
Ba0.5Sr0.5TiO3 films, suggesting that there exists a critical thickness for
phase change in the range of 2.0 nm to 2.8 nm. This may be ascribed mainly to
the intrinsic size effects.Comment: 13 pages, 4 figure
Photoemission and x-ray absorption studies of valence states in (Ni,Zn,Fe,Ti)O thin films exhibiting photo-induced magnetization
By means of photoemission and x-ray absorption spectroscopy, we have studied
the electronic structure of (Ni,Zn,Fe,Ti)O thin films, which
exhibits a cluster glass behavior with a spin-freezing temperature of
K and photo-induced magnetization (PIM) below . The Ni and Zn
ions were found to be in the divalent states. Most of the Fe and Ti ions in the
thin films were trivalent (Fe) and tetravalent (Ti),
respectively. While Ti doping did not affect the valence states of the Ni and
Zn ions, a small amount of Fe ions increased with Ti concentration,
consistent with the proposed charge-transfer mechanism of PIM.Comment: 4 pages, 4 figure
Hybridization between the conduction band and 3d orbitals in the oxide-based diluted magnetic semiconductor InVO
The electronic structure of InVO () has been
investigated using photoemission spectroscopy (PES) and x-ray absorption
spectroscopy (XAS). The V core-level PES and XAS spectra revealed
trivalent electronic state of the V ion, consistent with the substitution of
the V ion for the In site. The V 3d partial density of states obtained by the
resonant PES technique showed a sharp peak above the O band. While the O
XAS spectrum of InVO was similar to that of InO,
there were differences in the In and 3d XAS spectra between V-doped and
pure InO. The observations give clear evidence for hybridization
between the In conduction band and the V 3d orbitals in InVO.Comment: 5 pages, 4 figure
Soft x-ray magnetic circular dichroism study of weakly ferromagnetic ZnVO thin film
We performed a soft x-ray magnetic circular dichroism (XMCD) study of a
ZnVO thin film which showed small ferromagnetic moment. Field and
temperature dependences of V 2 XMCD signals indicated the coexistence of
Curie-Weiss paramagnetic, antiferromagnetic, and possibly ferromagnetic V ions,
quantitatively consistent with the magnetization measurements. We attribute the
paramagnetic signal to V ions substituting Zn sites which are somewhat
elongated along the c-axis
Electronic structure and magnetism of the diluted magnetic semiconductor Fe-doped ZnO nano-particles
We have studied the electronic structure of ZnFeO
nano-particles, which have been reported to show ferromagnetism at room
temperature, by x-ray photoemission spectroscopy (XPS), resonant photoemission
spectroscopy (RPES), x-ray absorption spectroscopy (XAS) and x-ray magnetic
circular dichroism (XMCD). From the experimental and cluster-model calculation
results, we find that Fe atoms are predominantly in the Fe ionic state
with mixture of a small amount of Fe and that Fe ions are
dominant in the surface region of the nano-particles. It is shown that the room
temperature ferromagnetism in the ZnFeO nano-particles is
primarily originated from the antiferromagnetic coupling between unequal
amounts of Fe ions occupying two sets of nonequivalent positions in the
region of the XMCD probing depth of 2-3 nm.Comment: Single column, 12 pages, 8 figures, 1 tabl
- β¦