33,780 research outputs found
Network analysis of online bidding activity
With the advent of digital media, people are increasingly resorting to online
channels for commercial transactions. Online auction is a prototypical example.
In such online transactions, the pattern of bidding activity is more complex
than traditional online transactions; this is because the number of bidders
participating in a given transaction is not bounded and the bidders can also
easily respond to the bidding instantaneously. By using the recently developed
network theory, we study the interaction patterns between bidders (items) who
(that) are connected when they bid for the same item (if the item is bid by the
same bidder). The resulting network is analyzed by using the hierarchical
clustering algorithm, which is used for clustering analysis for expression data
from DNA microarrays. A dendrogram is constructed for the item subcategories;
this dendrogram is compared with a traditional classification scheme. The
implication of the difference between the two is discussed.Comment: 8 pages and 11 figure
Higher Derivative CP(N) Model and Quantization of the Induced Chern-Simons Term
We consider higher derivative CP(N) model in 2+1 dimensions with the
Wess-Zumino-Witten term and the topological current density squared term. We
quantize the theory by using the auxiliary gauge field formulation in the path
integral method and prove that the extended model remains renormalizable in the
large N limit. We find that the Maxwell-Chern-Simons theory is dynamically
induced in the large N effective action at a nontrivial UV fixed point. The
quantization of the Chern-Simons term is also discussed.Comment: 8 pages, no figure, a minor change in abstract, added Comments on the
quantization of the Chern-Simons term whose coefficient is also corrected,
and some references are added. Some typos are corrected. Added a new
paragraph checking the equivalence between (3) and (5), and a related
referenc
Electromagnetic production of vector mesons at low energies
We have investigated exclusive photoproduction of light vector mesons
(, and ) on the nucleon at low energies. In order to
explore the questions concerning the so-called missing nucleon resonances, we
first establish the predictions from a model based on the Pomeron and meson
exchange mechanisms. We have also explored the contributions due to the
mechanisms involving - and -channel intermediate nucleon state. Some
discrepancies found at the energies near threshold and large scattering angles
suggest a possibility of using this reaction to identify the nucleon
resonances.Comment: 9 pages, LaTeX with sprocl.sty, 5 figures (11 eps files), Talk
presented at the NSTAR2000 Workshop, The Physics of Excited Nucleons,
Jefferson Lab., Newport News, Feb. 16-19, 200
Higher and missing resonances in omega photoproduction
We study the role of the nucleon resonances () in
photoproduction by using the quark model resonance parameters predicted by
Capstick and Roberts. The employed and
amplitudes include the configuration mixing effects due to the residual
quark-quark interactions. The contributions from the nucleon resonances are
found to be important in the differential cross sections at large scattering
angles and various spin observables. In particular, the parity asymmetry and
beam-target double asymmetry at forward scattering angles are suggested for a
crucial test of our predictions. The dominant contributions are found to be
from , a missing resonance, and which is
identified as the of the Particle Data Group.Comment: 8 pages, LaTeX with ws-p8-50x6-00.cls, 4 figures (5 eps files), Talk
presented at the NSTAR2001 Workshop on the Physics of Excited Nucleons,
Mainz, Germany, Mar. 7-10, 200
Electronic States in Diffused Quantum Wells
In the present study we calculate the energy values and the spatial
distributions of the bound electronic states in some diffused quantum wells.
The calculations are performed within the virtual crystal approximation, spin dependent empirical tight-binding model and the surface Green
function matching method. A good agreement is found between our results and
experimental data obtained for AlGaAs/GaAs quantum wells with thermally induced
changes in the profile at the interfaces. Our calculations show that for
diffusion lengths {\AA} the transition (C3-HH3) is not
sensitive to the diffusion length, but the transitions (C1-HH1), (C1-LH1),
(C2-HH2) and (C2-LH2) display large "blue shifts" as L_{D} increases. For
diffusion lengths {\AA} the transitions (C1-HH1) and (C1-LH1)
are less sensitive to the L_{D} changes than the (C3-HH3) transition. The
observed dependence is explained in terms of the bound states spatial
distributions.Comment: ReVTeX file, 7pp., no macros, 4 figures available on the reques
Absorption cross section in the topologically massive gravity at the critical point
The absorption cross section for the the warped AdS black hole background
shows that it is larger than the area even if the s-wave limit is considered.
It raises some question whether the deviation from the areal cross section is
due to the warped configuration of the geometry or the rotating coordinate
system, where these two effects are mixed up in the warped AdS black hole.
So, we study the low-frequency scattering dynamics of propagating scalar fields
under the warped AdS background at the critical point which reduces to the
BTZ black hole in the rotating frame without the warped factor, which shows
that the deformation effect at the critical point does not appear.Comment: 12 pages, LaTe
Entanglement between qubits induced by a common environment with a gap
We study a system of two qubits interacting with a common environment,
described by a two-spin boson model. We demonstrate two competing roles of the
environment: inducing entanglement between the two qubits and making them
decoherent. For the environment of a single harmonic oscillator, if its
frequency is commensurate with the induced two-qubit coupling strength, the two
qubits could be maximally entangled and the environment could be separable. In
the case of the environment of a bosonic bath, the gap of its spectral density
function is essential to generate entanglement between two qubits at
equilibrium and for it to be used as a quantum data bus.Comment: accepted for publication in Physical Review
- …
