18 research outputs found

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd

    Trends in Prevalence of Advanced HIV Disease at Antiretroviral Therapy Enrollment - 10 Countries, 2004-2015.

    Get PDF
    Monitoring prevalence of advanced human immunodeficiency virus (HIV) disease (i.e., CD4+ T-cell count <200 cells/μL) among persons starting antiretroviral therapy (ART) is important to understand ART program outcomes, inform HIV prevention strategy, and forecast need for adjunctive therapies.*,†,§ To assess trends in prevalence of advanced disease at ART initiation in 10 high-burden countries during 2004-2015, records of 694,138 ART enrollees aged ≥15 years from 797 ART facilities were analyzed. Availability of national electronic medical record systems allowed up-to-date evaluation of trends in Haiti (2004-2015), Mozambique (2004-2014), and Namibia (2004-2012), where prevalence of advanced disease at ART initiation declined from 75% to 34% (p<0.001), 73% to 37% (p<0.001), and 80% to 41% (p<0.001), respectively. Significant declines in prevalence of advanced disease during 2004-2011 were observed in Nigeria, Swaziland, Uganda, Vietnam, and Zimbabwe. The encouraging declines in prevalence of advanced disease at ART enrollment are likely due to scale-up of testing and treatment services and ART-eligibility guidelines encouraging earlier ART initiation. However, in 2015, approximately a third of new ART patients still initiated ART with advanced HIV disease. To reduce prevalence of advanced disease at ART initiation, adoption of World Health Organization (WHO)-recommended "treat-all" guidelines and strategies to facilitate earlier HIV testing and treatment are needed to reduce HIV-related mortality and HIV incidence

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    Antiretroviral therapy enrollment characteristics and outcomes among HIV-infected adolescents and young adults compared with older adults--seven African countries, 2004-2013.

    Get PDF
    Although scale-up of antiretroviral therapy (ART) since 2005 has contributed to declines of about 30% in the global annual number of human immunodeficiency (HIV)-related deaths and declines in global HIV incidence, estimated annual HIV-related deaths among adolescents have increased by about 50% and estimated adolescent HIV incidence has been relatively stable. In 2012, an estimated 2,500 (40%) of all 6,300 daily new HIV infections occurred among persons aged 15-24 years. Difficulty enrolling adolescents and young adults in ART and high rates of loss to follow-up (LTFU) after ART initiation might be contributing to mortality and HIV incidence in this age group, but data are limited. To evaluate age-related ART retention challenges, data from retrospective cohort studies conducted in seven African countries among 16,421 patients, aged ≥15 years at enrollment, who initiated ART during 2004-2012 were analyzed. ART enrollment and outcome data were compared among three groups defined by age at enrollment: adolescents and young adults (aged 15-24 years), middle-aged adults (aged 25-49 years), and older adults (aged ≥50 years). Enrollees aged 15-24 years were predominantly female (81%-92%), commonly pregnant (3%-32% of females), unmarried (54%-73%), and, in four countries with employment data, unemployed (53%-86%). In comparison, older adults were more likely to be male (p<0.001), employed (p<0.001), and married, (p<0.05 in five countries). Compared with older adults, adolescents and young adults had higher LTFU rates in all seven countries, reaching statistical significance in three countries in crude and multivariable analyses. Evidence-based interventions to reduce LTFU for adolescent and young adult ART enrollees could help reduce mortality and HIV incidence in this age group

    Federated Learning Enables Big Data for Rare Cancer Boundary Detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing
    corecore