55 research outputs found

    Antimicrobial Susceptibility of Lactobacillus delbrueckii subsp. lactis from Milk Products and Other Habitats

    Get PDF
    As components of many cheese starter cultures, strains of Lactobacillus delbrueckii subsp. lactis (LDL) must be tested for their antimicrobial susceptibility to avoid the potential horizontal transfer of antibiotic resistance (ABR) determinants in the human body or in the environment. To this end, a phenotypic test, as well as a screening for antibiotic resistance genes (ARGs) in genome sequences, is commonly performed. Historically, microbiological cutoffs (MCs), which are used to classify strains as either ‘sensitive’ or ‘resistant’ based on the minimal inhibitory concentrations (MICs) of a range of clinically-relevant antibiotics, have been defined for the whole group of the obligate homofermentative lactobacilli, which includes LDL among many other species. This often leads to inaccuracies in the appreciation of the ABR status of tested LDL strains and to false positive results. To define more accurate MCs for LDL, we analyzed the MIC profiles of strains originating from various habitats by using the broth microdilution method. These strains’ genomes were sequenced and used to complement our analysis involving a search for ARGs, as well as to assess the phylogenetic proximity between strains. Of LDL strains, 52.1% displayed MICs that were higher than the defined MCs for kanamycin, 9.9% for chloramphenicol, and 5.6% for tetracycline, but no ARG was conclusively detected. On the other hand, all strains displayed MICs below the defined MCs for ampicillin, gentamycin, erythromycin, and clindamycin. Considering our results, we propose the adaptation of the MCs for six of the tested clinically-relevant antibiotics to improve the accuracy of phenotypic antibiotic testing

    Hedyphane from Nezilovo, Macedonia

    Get PDF
    Two different members of lead calcium arsenate series of apatite group from Nezilovo are found. According to the chemical formula (calculated on the basis of 10 cations), infra red absorption powder spectra, X-ray powder patterns and unit cell dimensions these are two distinct members of one mineral species. Unit cell dimensions are a=10.157(3), c=7.256(6) and a=10.154(2), c=7.191(3) A. The first sample has Pb:Ca ratio 7.35:2.59 and the second one 6.54:3.45, what is closer to ideal hedyphane formula (6:4)

    Paenibacillus melissococcoides sp. nov., isolated from a honey bee colony affected by European foulbrood disease.

    Get PDF
    A novel, facultatively anaerobic, Gram-stain-positive, motile, endospore-forming bacterium of the genus Paenibacillus, designated strain 2.1T, was isolated from a colony of Apis mellifera affected by European foulbrood disease in Switzerland. The rod-shaped cells of strain 2.1T were 2.2–6.5 μm long and 0.7–1.1 μm wide. Colonies of strain 2.1T were orange-pigmented under oxic growth conditions on solid basal medium at 35–37 °C. Strain 2.1T showed catalase and cytochrome c oxidase activity. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid and phospholipid. The only respiratory quinone was menaquinone 7, and the major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0, iso-C17 : 0 and palmitic acid (C16 : 0), which is consistent with other members of the genus Paenibacillus. The G+C content of the genomic DNA of strain 2.1T was 53.3 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence similarity showed that strain 2.1T was closely related to Paenibacillus dendritiformis LMG 21716T (99.7 % similarity) and Paenibacillus thiaminolyticus DSM 7262T (98.8 %). The whole-genome average nucleotide identity between strain 2.1T and the type strains of P. dendritiformis and P. thiaminolyticus was 92 and 91 %, respectively, and thus lower than the 95 % threshold value for delineation of genomic prokaryotic species. Based on the results of phylogenetic, genomic, phenotypic and chemotaxonomic analyses we propose the name Paenibacillus melissococcoides sp. nov. for this novel Paenibacillus species. The type strain is 2.1T (=CCOS 2000T=DSM 113619T=LMG 32539T)

    Parallel Evolution of Pseudomonas aeruginosa during a Prolonged ICU-Infection Outbreak.

    Get PDF
    Most knowledge about Pseudomonas aeruginosa pathoadaptation is derived from studies on airway colonization in cystic fibrosis; little is known about adaptation in acute settings. P. aeruginosa frequently affects burned patients and the burn wound niche has distinct properties that likely influence pathoadaptation. This study aimed to genetically and phenotypically characterize P. aeruginosa isolates collected during an outbreak of infection in a burn intensive care unit (ICU). Sequencing reads from 58 isolates of ST1076 P. aeruginosa taken from 23 patients were independently mapped to a complete reference genome for the lineage (H25338); genetic differences were identified and were used to define the population structure. Comparative genomic analysis at single-nucleotide resolution identified pathoadaptive genes that evolved multiple, independent mutations. Three key phenotypic assays (growth performance, motility, carbapenem resistance) were performed to complement the genetic analysis for 47 unique isolates. Population structure for the ST1076 lineage revealed 11 evolutionary sublineages. Fifteen pathoadaptive genes evolved mutations in at least two sublineages. The most prominent functional classes affected were transcription/two-component regulatory systems, and chemotaxis/motility and attachment. The most frequently mutated gene was oprD, which codes for outer membrane porin involved in uptake of carbapenems. Reduced growth performance and motility were found to be adaptive phenotypic traits, as was high level of carbapenem resistance, which correlated with higher carbapenem consumption during the outbreak. Multiple prominent linages evolved each of the three traits in parallel providing evidence that they afford a fitness advantage for P. aeruginosa in the context of human burn infection. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative pathogen causing infections in acutely burned patients. The precise mechanisms required for the establishment of infection in the burn setting, and adaptive traits underpinning prolonged outbreaks are not known. We have assessed genotypic data from 58 independent P. aeruginosa isolates taken from a single lineage that was responsible for an outbreak of infection in a burn ICU that lasted for almost 2.5 years and affected 23 patients. We identified a core set of 15 genes that we predict to control pathoadaptive traits in the burn infection based on the frequency with which independent mutations evolved. We combined the genotypic data with phenotypic data (growth performance, motility, antibiotic resistance) and clinical data (antibiotic consumption) to identify adaptive phenotypes that emerged in parallel. High-level carbapenem resistance evolved rapidly, and frequently, in response to high clinical demand for this antibiotic class during the outbreak

    Study of human liver disease with P-31 magnetic resonance spectroscopy.

    No full text
    Liver metabolism and energetics of 24 patients with liver disease were studied using phosphorus-31 magnetic resonance spectroscopy. Significant abnormalities were detected in the majority of these patients. A striking diversity in metabolic patterns was observed. Patients with acute viral hepatitis had low liver phosphodiesters and high phosphomonoesters, possibly phosphocholine and phosphoethanolamine. In alcoholic hepatitis phosphomonoesters were raised. Intracellular inorganic phosphate and inorganic phosphate/ATP ratios were decreased in primary biliary cirrhosis and in some patients with hepatitis. These spectroscopic results were evaluated in respect of the pattern of liver damage and cellular regeneration. Liver tumours had raised phosphomonoesters and also showed evidence for altered spin-lattice relaxation of the phosphorus nucleus in various metabolites. In iron overload the liver ATP resonances were broadened. The line broadening correlated with the degree of iron overload suggesting the potential use of P-31 magnetic resonance spectroscopy for measuring liver iron
    corecore