4 research outputs found

    Internet of Things in Sustainable Energy Systems

    Get PDF
    Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy systems approaches, methodologies, scenarios, and tools is presented with a detailed discussion of different sensing and communications techniques. This IoT approach in energy systems is envisioned to enhance the bidirectional interchange of network services in grid by using Internet of Things in grid that will result in enhanced system resilience, reliable data flow, and connectivity optimization. Moreover, the sustainable energy IoT research challenges and innovation opportunities are also discussed to address the complex energy needs of our community and promote a strong energy sector economy

    Sustainable intensification in African agriculture

    No full text
    Over the past half-century, agricultural production gains have provided a platform for rural and urban economic growth worldwide. In African countries, however, agriculture has been widely assumed to have performed badly. Foresight commissioned analyses of 40 projects and programmes in 20 countries where sustainable intensification has been developed during the 1990s-2000s. The cases included crop improvements, agroforestry and soil conservation, conservation agriculture, integrated pest management, horticulture, livestock and fodder crops, aquaculture and novel policies and partnerships. By early 2010, these projects had documented benefits for 10.39 million farmers and their families and improvements on approximately 12.75 million ha. Food outputs by sustainable intensification have been multiplicative - by which yields per hectare have increased by combining the use of new and improved varieties and new agronomic-agroecological management (crop yields rose on average by 2.13-fold), and additive - by which diversification has resulted in the emergence of a range of new crops, livestock or fish that added to the existing staples or vegetables already being cultivated. The challenge is now to spread effective processes and lessons to many more millions of generally small farmers and pastoralists across the whole continent. These projects had seven common lessons for scaling up and spreading: (i) science and farmer inputs into technologies and practices that combine crops-animals with agroecological and agronomic management; (ii) creation of novel social infrastructure that builds trust among individuals and agencies; (iii) improvement of farmer knowledge and capacity through the use of farmer field schools and modern information and communication technologies; (iv) engagement with the private sector for supply of goods and services; (v) a focus on women's educational, microfinance and agricultural technology needs; (vi) ensuring the availability of microfinance and rural banking; and (vii) ensuring public sector support for agriculture. This research forms part of the UK Government's Foresight Global Food and Farming project. © 2011 Earthscan
    corecore