100 research outputs found

    Multi-component olivine for lithium-ion hybrid capacitor

    Get PDF
    A lithium-ion hybrid capacitor comprising of a battery type multi-component olivine (LiMn1/3Co1/3Ni1/3PO4) cathode and a capacitive type carbon negative electrode is reported. Olivine phosphate synthesized with chelating agent's polyvinylpyrrolidone (PVP) or triethanolamine (TEA) showed uniform carbon coating through in-situ process exhibiting a surface area 5.1 m2/g with porosity 0.02 cm2/g. The surface area for commercial carbon electrode was observed to be 1450 m2/g with high porosity 0.76 cm2/g. Galvanostatic charge/discharge cycling tests were conducted in the coin cells, olivine vs. Li, offering a cell voltage of 4.75 V vs. Li with a maximum specific capacitance of 125 F/g. In the case of olivine vs. carbon in a lithium-ion hybrid device delivered a high discharge capacitance of 86 F/g at a specific current of 0.12 A/g with a cycling retention of 53 F/g (38% loss) after 250 cycles. The obtained performance of PVP synthesized olivine material is manifested to uniform carbon coating and the trapped organic products that provide pathways for facile electrochemical reactions than their TEA counterparts

    Insights into Fanconi Anaemia from the structure of human FANCE

    Get PDF
    Fanconi Anaemia (FA) is a cancer predisposition disorder characterized by spontaneous chromosome breakage and high cellular sensitivity to genotoxic agents. In response to DNA damage, a multi-subunit assembly of FA proteins, the FA core complex, monoubiquitinates the downstream FANCD2 protein. The FANCE protein plays an essential role in the FA process of DNA repair as the FANCD2-binding component of the FA core complex. Here we report a crystallographic and biological study of human FANCE. The first structure of a FA protein reveals the presence of a repeated helical motif that provides a template for the structural rationalization of other proteins defective in Fanconi Anaemia. The portion of FANCE defined by our crystallographic analysis is sufficient for interaction with FANCD2, yielding structural information into the mode of FANCD2 recruitment to the FA core complex. Disease-associated mutations disrupt the FANCE-FANCD2 interaction, providing structural insight into the molecular mechanisms of FA pathogenesis.This work was supported by a Wellcome Trust senior research fellowship award to L.P. Atomic coordinates and structure factors have been deposited in the RCS PDB with accession code: 2ILR. Funding to pay the Open Access Publication change was provided by The Wellcome Trust

    Many-task computing on many-core architectures

    Get PDF
    Many-Task Computing (MTC) is a common scenario for multiple parallel systems, such as cluster, grids, cloud and supercomputers, but it is not so popular in shared memory parallel processors. In this sense and given the spectacular growth in performance and in number of cores integrated in many-core architectures, the study of MTC on such architectures is becoming more and more relevant. In this paper, authors present what are those programming mechanisms to take advantages of such massively parallel features for the particular target of MTC. Also, the hardware features of the two dominant many-core platforms (NVIDIA's GPUs and Intel Xeon Phi) are also analyzed for our specific framework. Given the important differences in terms of hardware and software in our two many-core platforms, we have considered different strategies based on CUDA (for GPUs) and OpenMP (for Intel Xeon Phi). We carried out several test cases based on an appropriate and widely studied problem for benchmarking as matrix multiplication. Essentially, this study consisted of comparing the time consumed for computing in parallel several tasks one by one (the whole computational resources are used just to compute one task at a time) with the time consumed for computing in parallel the same set of tasks simultaneously (the whole computational resources are used for computing the set of tasks at very same time). Finally, we compared both software-hardware scenarios to identify the most relevant computer features in each of our many-core architectures

    Kinetic Studies on Removal of Fluoride from Drinking Water by using Tamarind Shell and Pipal leaf Powder

    Get PDF
    Abstract The study aimed to develop adsorbents from leaves of Ficus religiosa (Pipal) and Tamarindus Indica (Tamarind) fruit shell to remove fluoride from drinking water. Batch adsorption experiments were undertaken on natural adsorbents (Tamarindus Indica and Ficus religiosa) developed from locally available trees to assess their suitability to remove fluoride from drinking water. The effect of controlling parameters of adsorption like pH, dose of adsorbent, contact time and initial sorbate concentration on fluoride removal efficiency was studied and optimum values for maximum uptake were found. Tamarind fruit shell exhibited highest fluorine removal efficiency about 85% at pH of 2, initial fluorine concentration of 3 mg/l, contact time of 90 min, adsorbent dosage of 2g/100ml and maintaining temperature of 307 K. The maximum adsorption of fluoride for Pipal leaf powder (79%) was observed at pH 2, the optimum sorbent doses were found to be 2.0 g/l. The equilibrium was achieved in 1.5 and 2 hour, respectively. The obtained data were fitted to Langmuir and Freundlich isotherms

    Hemodynamic latency is associated with reduced intelligence across the lifespan: an fMRI DCM study of aging, cerebrovascular integrity, and cognitive ability

    Get PDF
    Changes in neurovascular coupling are associated with both Alzheimer’s disease and vascular dementia in later life, but this may be confounded by cerebrovascular risk. We hypothesized that hemodynamic latency would be associated with reduced cognitive functioning across the lifespan, holding constant demographic and cerebrovascular risk. In 387 adults aged 18–85 (mean = 48.82), dynamic causal modeling was used to estimate the hemodynamic response function in the left and right V1 and V3-ventral regions of the visual cortex in response to a simple checkerboard block design stimulus with minimal cognitive demands. The hemodynamic latency (transit time) in the visual cortex was used to predict general cognitive ability (Full-Scale IQ), controlling for demographic variables (age, race, education, socioeconomic status) and cerebrovascular risk factors (hypertension, alcohol use, smoking, high cholesterol, BMI, type 2 diabetes, cardiac disorders). Increased hemodynamic latency in the visual cortex predicted reduced cognitive function (p < 0.05), holding constant demographic and cerebrovascular risk. Increased alcohol use was associated with reduced overall cognitive function (Full Scale IQ 2.8 pts, p < 0.05), while cardiac disorders (Full Scale IQ 3.3 IQ pts; p < 0.05), high cholesterol (Full Scale IQ 3.9 pts; p < 0.05), and years of education (2 IQ pts/year; p < 0.001) were associated with higher general cognitive ability. Increased hemodynamic latency was associated with reduced executive functioning (p < 0.05) as well as reductions in verbal concept formation (p < 0.05) and the ability to synthesize and analyze abstract visual information (p < 0.01). Hemodynamic latency is associated with reduced cognitive ability across the lifespan, independently of other demographic and cerebrovascular risk factors. Vascular health may predict cognitive ability long before the onset of dementias

    Advanced control of nonlinear beams with Pancharatnam-Berry metasurfaces

    Get PDF
    The application of the Pancharatnam-Berry (PB) phase approach to the design of nonlinear metasurfaces has recently enabled subdiffractive phase control over the generated nonlinear fields, embedding phased array features in ultrathin structures. Here, we rigorously model, analyze, and design highly efficient nonlinear metasurfaces with advanced functionalities, including the generation of pencil beams steered in arbitrary directions in space, as well as vortex beams with polarization-dependent angular momentum, and we extend the PB approach to various nonlinear processes. To this purpose, we develop an accurate and efficient theoretical framework-inspired by the linear phase array theory-based on the effective nonlinear susceptibility method, thus avoiding the use of time-consuming numerical simulations. Our findings allowexploiting the flat nonlinear optics paradigm, enabling exciting applications based on subwavelength field control over flat and large-scale structures with giant nonlinear responsesclos

    Stelleninhaber geht – Wissen bleibt!

    Get PDF
    In Deutschland nimmt der Anteil älterer Arbeitnehmerinnen und Arbeitnehmer tendenziell zu. Deshalb muss sich die Bibliotheksleitung verstärkt auf das altersbedingte Ausscheiden älterer Arbeitnehmer einstellen. Eine langjährige Fachkraft verfügt über spezielles Erfahrungswissen im direkten Aufgabenfeld. Die Bibliotheksleitung muss den Transfer allen relevanten Wissens, dazu gehört das Erfahrungswissen, vom Stelleninhaber auf seinen Nachfolger ermöglichen und unterstützen. Am Beispiel der Universitätsbibliothek der Bergakademie Freiberg wird untersucht, wie das Wissensmanagement im Rahmen eines Stellenwechsels derzeit geregelt ist. Das geschieht mit Hilfe von Tiefeninterviews in verschiedenen Abteilungen. Die Auswertung der Interviews bildet die Basis für ein Konzept für das Wissensmanagement beim Stellenwechsel an der UB Freiberg. Das Konzept benennt u. a. Maßnahmen zur Identifikation des stellenbezogenen Wissens, Maßnahmen zur Dokumentation des relevanten Wissens und Instrumente zur Wissensweitergabe beim Stellenwechsel

    Enhanced Pro-Inflammatory Cytokine Responses following Toll-Like-Receptor Ligation in Schistosoma haematobium-Infected Schoolchildren from Rural Gabon

    Get PDF
    BACKGROUND: Schistosoma infection is thought to lead to down-regulation of the host's immune response. This has been shown for adaptive immune responses, but the effect on innate immunity, that initiates and shapes the adaptive response, has not been extensively studied. In a first study to characterize these responses, we investigated the effect of Schistosoma haematobium infection on cytokine responses of Gabonese schoolchildren to a number of Toll-like receptor (TLR) ligands. METHODOLOGY: Peripheral blood mononuclear cells (PBMCs) were collected from S. haematobium-infected and uninfected schoolchildren from the rural area of Zile in Gabon. PBMCs were incubated for 24 h and 72 h with various TLR ligands, as well as schistosomal egg antigen (SEA) and adult worm antigen (AWA). Pro-inflammatory TNF-alpha and anti-inflammatory/regulatory IL-10 cytokine concentrations were determined in culture supernatants. PRINCIPAL FINDINGS: Infected children produced higher adaptive IL-10 responses than uninfected children against schistosomal antigens (72 h incubation). On the other hand, infected children had higher TNF-alpha responses than uninfected children and significantly higher TNF-alpha to IL-10 ratios in response to FSL-1 and Pam3, ligands of TLR2/6 and TLR2/1 respectively. A similar trend was observed for the TLR4 ligand LPS while Poly(I:C) (Mda5/TLR3 ligand) did not induce substantial cytokine responses (24 h incubation). CONCLUSIONS: This pilot study shows that Schistosoma-infected children develop a more pro-inflammatory TLR2-mediated response in the face of a more anti-inflammatory adaptive immune response. This suggests that S. haematobium infection does not suppress the host's innate immune system in the context of single TLR ligation

    Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania.

    Get PDF
    Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    Get PDF
    The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam
    corecore