8,657 research outputs found
Orbital-selective Mass Enhancements in Multi-band CaSrRuO Systems Analyzed by the Extended Drude Model
We investigated optical spectra of quasi-two-dimensional multi-band CaSrRuO systems. The extended Drude model analysis on the
ab-plane optical conductivity spectra indicates that the effective mass should
be enhanced near . Based on the sum rule argument, we showed that the
orbital-selective Mott-gap opening for the bands, the widely
investigated picture, could not be the origin of the mass enhancement. We
exploited the multi-band effects in the extended Drude model analysis, and
demonstrated that the intriguing heavy mass state near should come from
the renormalization of the band.Comment: 4 figure
Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes
© Author(s) 2019.Absorption aerosol optical depth (AAOD) as obtained from sun–sky photometer measurements provides a measure of the light-absorbing properties of the columnar aerosol loading. However, it is not an unambiguous aerosol-type-specific parameter, particularly if several types of absorbing aerosols, for instance black carbon (BC) and mineral dust, are present in a mixed aerosol plume. The contribution of mineral dust to total aerosol light absorption is particularly important at UV wavelengths. In this study we refine a lidar-based technique applied to the separation of dust and non-dust aerosol types for the use with Aerosol Robotic Network (AERONET) direct sun and inversion products. We extend the methodology to retrieve AAOD related to non-dust aerosol (AAODnd) and BC (AAODBC). We test the method at selected AERONET sites that are frequently affected by aerosol plumes that contain a mixture of Saharan or Asian mineral dust and biomass-burning smoke or anthropogenic pollution, respectively. We find that aerosol optical depth (AOD) related to mineral dust as obtained with our methodology is frequently smaller than coarse-mode AOD. This suggests that the latter is not an ideal proxy for estimating the contribution of mineral dust to mixed dust plumes. We present the results of the AAODBC retrieval for the selected AERONET sites and compare them to coincident values provided in the Copernicus Atmosphere Monitoring System aerosol reanalysis.We find that modelled and AERONET AAODBC are most consistent for Asian sites or at Saharan sites with strong local anthropogenic sources.Peer reviewe
Finite-size scaling theory for explosive percolation transitions
The finite-size scaling (FSS) theory for continuous phase transitions has
been useful in determining the critical behavior from the size dependent
behaviors of thermodynamic quantities. When the phase transition is
discontinuous, however, FSS approach has not been well established yet. Here,
we develop a FSS theory for the explosive percolation transition arising in the
Erd\H{o}s and R\'enyi model under the Achlioptas process. A scaling function is
derived based on the observed fact that the derivative of the curve of the
order parameter at the critical point diverges with system size in a
power-law manner, which is different from the conventional one based on the
divergence of the correlation length at . We show that the susceptibility
is also described in the same scaling form. Numerical simulation data for
different system sizes are well collapsed on the respective scaling functions.Comment: 5 pages, 5 figure
Direct sampling of the Susskind-Glogower phase distributions
Coarse-grained phase distributions are introduced that approximate to the
Susskind--Glogower cosine and sine phase distributions. The integral relations
between the phase distributions and the phase-parametrized field-strength
distributions observable in balanced homodyning are derived and the integral
kernels are analyzed. It is shown that the phase distributions can be directly
sampled from the field-strength distributions which offers the possibility of
measuring the Susskind--Glogower cosine and sine phase distributions with
sufficiently well accuracy. Numerical simulations are performed to demonstrate
the applicability of the method.Comment: 10 figures using a4.st
An Electronic Mach-Zehnder Quantum Eraser
We propose an electronic quantum eraser in which the electrons are injected
into a mesoscopic conductor at the quantum Hall regime. The conductor is
composed of a two-path interferometer which is an electronic analogue of the
optical Mach-Zehnder interferometer, and a quantum point contact detector
capacitively coupled to the interferometer. While the interference of the
output current at the interferometer is shown to be suppressed by the
which-path information, we show that the which-path information is erased by
the zero-frequency cross correlation measurement between the interferometer and
the detector output leads. We also investigate a modified setup in which the
detector is replaced by a two-path interferometer.We show that the path
distinguishability and the visibility of the joint detection can be controlled
in a continuous manner, and satisfy a complementarity relation for the
entangled electrons.Comment: 5 pages, 2 figure
Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors
We investigated domain nucleation process in epitaxial Pb(Zr,Ti)O3 capacitors
under a modified piezoresponse force microscope. We obtained domain evolution
images during polarization switching process and observed that domain
nucleation occurs at particular sites. This inhomogeneous nucleation process
should play an important role in an early stage of switching and under a high
electric field. We found that the number of nuclei is linearly proportional to
log(switching time), suggesting a broad distribution of activation energies for
nucleation. The nucleation sites for a positive bias differ from those for a
negative bias, indicating that most nucleation sites are located at
ferroelectric/electrode interfaces
- …
