348 research outputs found

    Intensity distribution in rotational line spectra

    Get PDF
    Completely resolved Doppler-free rotational line spectra of six vibronic two-photon bands in benzene C6 H6 and C6 D6 are presented. The excited final states possess different excess energies in S1 (1567 to 2727 cm−1 ) and are embedded in dense manifolds of background states with differing densities of states (1<rho<60 1/cm−1 ). The bands are analyzed by a statistical procedure. The intensity distribution of several hundreds of lines of each band is investigated. It is found that all weakly perturbed bands display a similar, peaked intensity distribution while in strongly perturbed bands the number of lines decreases monotonically with increasing intensity. The origin of this difference is discussed in terms of coupling to the many background states. The Journal of Chemical Physics is copyrighted by The American Institute of Physics

    Intramolecular Vibrational Relaxation of Benzene

    Get PDF

    Electronic spectra of polyatomic molecules with resolved individual rotational transitions

    Get PDF
    The density of rotational transitions for a polyatomic molecule is so large that in general many such transitions are hidden under the Doppler profile, this being a fundamental limit of conventional high resolution electronic spectroscopy. We present here the first Doppler-free cw two-photon spectrum of a polyatomic molecule. In the case of benzene, 400 lines are observed of which 300 are due to single rotational transitions, their spacing being weil below the Doppler profile. The resolution so achieved is 1.5 X 10'. Benzene is a prototype planar molecule taken to have D •• symmetry in the ground as weil as in the first excited state. From our ultra-high resolution results it is found that benzene in the excited SI state i8 a symmetrical rotor to a high degree. A negative inertial defect is found for the excited state. The origin of this inertial defect is discused

    C-projective geometry

    Get PDF
    We develop in detail the theory of (almost) c-projective geometry, a natural analogue of projective differential geometry adapted to (almost) complex manifolds. We realise it as a type of parabolic geometry and describe the associated Cartan or tractor connection. A Kähler manifold gives rise to a c-projective structure and this is one of the primary motivations for its study. The existence of two or more Kähler metrics underlying a given c-projective structure has many ramifications, which we explore in depth. As a consequence of this analysis, we prove the Yano- Obata Conjecture for complete Kähler manifolds: if such a manifold admits a one parameter group of c-projective transformations that are not affine, then it is complex projective space, equipped with a multiple of the Fubini-Study metric.</p

    Investigation of marmoset hybrids (Cebuella pygmaea x Callithrix jacchus) and related Callitrichinae (Platyrrhini) by cross-species chromosome painting and comparative genomic hybridization

    Get PDF
    We report on the cytogenetics of twin offspring from an interspecies cross in marmosets (Callitrichinae, Platyrrhini), resulting from a pairing between a female Common marmoset (Callithrix jacchus, 2n = 46) and a male Pygmy marmoset (Cebuella pygmaea, 2n = 44). We analyzed their karyotypes by multi-directional chromosome painting employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. Both hybrid individuals had a karyotype with a diploid chromosome number of 2n = 45. As a complementary tool, interspecies comparative genomic hybridization (iCGH) was performed in order to screen for genomic imbalances between the hybrids and their parental species, and between Callithrix argentata and S. oedipus, respectively. Copyright (C) 2005 S. Karger AG, Basel

    C-projective geometry

    Get PDF

    Phylogenetic inferences of Atelinae (Platyrrhini) based on multi-directional chromosome painting in Brachyteles arachnoides, Ateles paniscus paniscus and Ateles b. marginatus

    Get PDF
    We performed multi-directional chromosome painting in a comparative cytogenetic study of the three Atelinae species Brachyteles arachnoides, Ateles paniscus paniscus and Ateles belzebuth marginatus, in order to reconstruct phylogenetic relationships within this Platyrrhini subfamily. Comparative chromosome maps between these species were established by multi-color fluorescence in situ hybridization ( FISH) employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. The three species included in this study and four previously analyzed species from all four Atelinae genera were subjected to a phylogenetic analysis on the basis of a data matrix comprised of 82 discrete chromosome characters. The results confirmed that Atelinae represent a monophyletic clade with a putative ancestral karyotype of 2n = 62 chromosomes. Phylogenetic analysis revealed an evolutionary branching sequence \{Alouatta \{Brachyteles \{Lagothrix and Ateles\}\}\} in Atelinae and \{Ateles belzebuth marginatus \{Ateles paniscus paniscus \{Ateles belzebuth hybridus and Ateles geoffroyi\}\}\} in genus Ateles. The chromosomal data support a re-evaluation of the taxonomic status of Ateles b. hybridus. Copyright (C) 2005 S. Karger AG, Basel
    corecore