4,864 research outputs found

    Experimental Demonstration of Greenberger-Horne-Zeilinger Correlations Using Nuclear Magnetic Resonance

    Get PDF
    The Greenberger-Horne-Zeilinger (GHZ) effect provides an example of quantum correlations that cannot be explained by classical local hidden variables. This paper reports on the experimental realization of GHZ correlations using nuclear magnetic resonance (NMR). The NMR experiment differs from the originally proposed GHZ experiment in several ways: it is performed on mixed states rather than pure states; and instead of being widely separated, the spins on which it is performed are all located in the same molecule. As a result, the NMR version of the GHZ experiment cannot entirely rule out classical local hidden variables. It nonetheless provides an unambiguous demonstration of the "paradoxical" GHZ correlations, and shows that any classical hidden variables must communicate by non-standard and previously undetected forces. The NMR demonstration of GHZ correlations shows the power of NMR quantum information processing techniques for demonstrating fundamental effects in quantum mechanics.Comment: Latex2.09, 8 pages, 1 eps figur

    NUTRItion and CLIMate (NUTRICLIM): investigating the relationship between climate variables and childhood malnutrition through agriculture, an exploratory study in Burkina Faso

    Get PDF
    Malnutrition remains a leading cause of death in children in low- and middle-income countries; this will be aggravated by climate change. Annually, 6.9 million deaths of children under 5 were attributable directly or indirectly to malnutrition. Although these figures have recently decreased, evidence shows that a world with a medium climate (local warming up to 3–4 °C) will create an additional 25.2 million malnourished children. This proof of concept study explores the relationships between childhood malnutrition (more specifically stunting), regional agricultural yields, and climate variable through the use of remote sensing (RS) satellite imaging along with algorithms to predict the effect of climate variability on agricultural yields and on malnutrition of children under 5. The success of this proof of purpose study, NUTRItion and CLIMate (NUTRICLIM), should encourage researchers to apply both concept and tools to study of the link between weather variability, crop yield, and malnutrition on a larger scale. It would also allow for linking such micro-level data to climate models and address the challenge of projecting the additional impact of childhood malnutrition from climate change to various policy relevant time horizons

    Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level, on an NMR quantum information processor

    Get PDF
    We describe the experimental implementation of a recently proposed quantum algorithm involving quantum entanglement at the level of two qubits using NMR. The algorithm solves a generalisation of the Deutsch problem and distinguishes between even and odd functions using fewer function calls than is possible classically. The manipulation of entangled states of the two qubits is essential here, unlike the Deutsch-Jozsa algorithm and the Grover's search algorithm for two bits.Comment: 4 pages, two eps figure

    Size and frequency of natural forest disturbances and Amazon carbon balance

    Get PDF
    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of B1.28 Pg C y 1 over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of B0.01 Pg C y 1 , and that the largest-scale disturbances as a result of blow-downs only account for losses of B0.003 Pg C y 1 . Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink

    Digital Quantum Simulation with Rydberg Atoms

    Full text link
    We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involving many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaev's toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral Particles" of "Quantum Information Processing

    A Rydberg Quantum Simulator

    Full text link
    Following Feynman and as elaborated on by Lloyd, a universal quantum simulator (QS) is a controlled quantum device which reproduces the dynamics of any other many particle quantum system with short range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open system evolution. We investigate how laser excited Rydberg atoms in large spacing optical or magnetic lattices can provide an efficient implementation of a universal QS for spin models involving (high order) n-body interactions. This includes the simulation of Hamiltonians of exotic spin models involving n-particle constraints such as the Kitaev toric code, color code, and lattice gauge theories with spin liquid phases. In addition, it provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The key basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates via auxiliary Rydberg atoms, including a possible dissipative time step via optical pumping. This allows to mimic the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.Comment: 8 pages, 4 figure

    The PHASES Differential Astrometry Data Archive. V. Candidate Substellar Companions to Binary Systems

    Get PDF
    The Palomar High-precision Astrometric Search for Exoplanet Systems monitored 51 subarcsecond binary systems to evaluate whether tertiary companions as small as Jovian planets orbited either the primary or secondary stars, perturbing their otherwise smooth Keplerian motions. Six binaries are presented that show evidence of substellar companions orbiting either the primary or secondary star. Of these six systems, the likelihoods of two of the detected perturbations to represent real objects are considered to be "high confidence", while the remaining four systems are less certain and will require continued observations for confirmation.Comment: 16 Pages, Accepted to A

    Multiplicativity of completely bounded p-norms implies a new additivity result

    Full text link
    We prove additivity of the minimal conditional entropy associated with a quantum channel Phi, represented by a completely positive (CP), trace-preserving map, when the infimum of S(gamma_{12}) - S(gamma_1) is restricted to states of the form gamma_{12} = (I \ot Phi)(| psi >< psi |). We show that this follows from multiplicativity of the completely bounded norm of Phi considered as a map from L_1 -> L_p for L_p spaces defined by the Schatten p-norm on matrices; we also give an independent proof based on entropy inequalities. Several related multiplicativity results are discussed and proved. In particular, we show that both the usual L_1 -> L_p norm of a CP map and the corresponding completely bounded norm are achieved for positive semi-definite matrices. Physical interpretations are considered, and a new proof of strong subadditivity is presented.Comment: Final version for Commun. Math. Physics. Section 5.2 of previous version deleted in view of the results in quant-ph/0601071 Other changes mino
    corecore