4,864 research outputs found
Experimental Demonstration of Greenberger-Horne-Zeilinger Correlations Using Nuclear Magnetic Resonance
The Greenberger-Horne-Zeilinger (GHZ) effect provides an example of quantum
correlations that cannot be explained by classical local hidden variables. This
paper reports on the experimental realization of GHZ correlations using nuclear
magnetic resonance (NMR). The NMR experiment differs from the originally
proposed GHZ experiment in several ways: it is performed on mixed states rather
than pure states; and instead of being widely separated, the spins on which it
is performed are all located in the same molecule. As a result, the NMR version
of the GHZ experiment cannot entirely rule out classical local hidden
variables. It nonetheless provides an unambiguous demonstration of the
"paradoxical" GHZ correlations, and shows that any classical hidden variables
must communicate by non-standard and previously undetected forces. The NMR
demonstration of GHZ correlations shows the power of NMR quantum information
processing techniques for demonstrating fundamental effects in quantum
mechanics.Comment: Latex2.09, 8 pages, 1 eps figur
NUTRItion and CLIMate (NUTRICLIM): investigating the relationship between climate variables and childhood malnutrition through agriculture, an exploratory study in Burkina Faso
Malnutrition remains a leading cause of death in children in low- and middle-income countries; this will be aggravated by climate change. Annually, 6.9 million deaths of children under 5 were attributable directly or indirectly to malnutrition. Although these figures have recently decreased, evidence shows that a world with a medium climate (local warming up to 3–4 °C) will create an additional 25.2 million malnourished children. This proof of concept study explores the relationships between childhood malnutrition (more specifically stunting), regional agricultural yields, and climate variable through the use of remote sensing (RS) satellite imaging along with algorithms to predict the effect of climate variability on agricultural yields and on malnutrition of children under 5. The success of this proof of purpose study, NUTRItion and CLIMate (NUTRICLIM), should encourage researchers to apply both concept and tools to study of the link between weather variability, crop yield, and malnutrition on a larger scale. It would also allow for linking such micro-level data to climate models and address the challenge of projecting the additional impact of childhood malnutrition from climate change to various policy relevant time horizons
Recommended from our members
Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering
For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives
Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level, on an NMR quantum information processor
We describe the experimental implementation of a recently proposed quantum
algorithm involving quantum entanglement at the level of two qubits using NMR.
The algorithm solves a generalisation of the Deutsch problem and distinguishes
between even and odd functions using fewer function calls than is possible
classically. The manipulation of entangled states of the two qubits is
essential here, unlike the Deutsch-Jozsa algorithm and the Grover's search
algorithm for two bits.Comment: 4 pages, two eps figure
Size and frequency of natural forest disturbances and Amazon carbon balance
Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of B1.28 Pg C y 1 over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of B0.01 Pg C y 1 , and that the largest-scale disturbances as a result of blow-downs only account for losses of B0.003 Pg C y 1 . Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink
Digital Quantum Simulation with Rydberg Atoms
We discuss in detail the implementation of an open-system quantum simulator
with Rydberg states of neutral atoms held in an optical lattice. Our scheme
allows one to realize both coherent as well as dissipative dynamics of complex
spin models involving many-body interactions and constraints. The central
building block of the simulation scheme is constituted by a mesoscopic Rydberg
gate that permits the entanglement of several atoms in an efficient, robust and
quick protocol. In addition, optical pumping on ancillary atoms provides the
dissipative ingredient for engineering the coupling between the system and a
tailored environment. As an illustration, we discuss how the simulator enables
the simulation of coherent evolution of quantum spin models such as the
two-dimensional Heisenberg model and Kitaev's toric code, which involves
four-body spin interactions. We moreover show that in principle also the
simulation of lattice fermions can be achieved. As an example for controlled
dissipative dynamics, we discuss ground state cooling of frustration-free spin
Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral
Particles" of "Quantum Information Processing
A Rydberg Quantum Simulator
Following Feynman and as elaborated on by Lloyd, a universal quantum
simulator (QS) is a controlled quantum device which reproduces the dynamics of
any other many particle quantum system with short range interactions. This
dynamics can refer to both coherent Hamiltonian and dissipative open system
evolution. We investigate how laser excited Rydberg atoms in large spacing
optical or magnetic lattices can provide an efficient implementation of a
universal QS for spin models involving (high order) n-body interactions. This
includes the simulation of Hamiltonians of exotic spin models involving
n-particle constraints such as the Kitaev toric code, color code, and lattice
gauge theories with spin liquid phases. In addition, it provides the
ingredients for dissipative preparation of entangled states based on
engineering n-particle reservoir couplings. The key basic building blocks of
our architecture are efficient and high-fidelity n-qubit entangling gates via
auxiliary Rydberg atoms, including a possible dissipative time step via optical
pumping. This allows to mimic the time evolution of the system by a sequence of
fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg
gates.Comment: 8 pages, 4 figure
The PHASES Differential Astrometry Data Archive. V. Candidate Substellar Companions to Binary Systems
The Palomar High-precision Astrometric Search for Exoplanet Systems monitored
51 subarcsecond binary systems to evaluate whether tertiary companions as small
as Jovian planets orbited either the primary or secondary stars, perturbing
their otherwise smooth Keplerian motions. Six binaries are presented that show
evidence of substellar companions orbiting either the primary or secondary
star. Of these six systems, the likelihoods of two of the detected
perturbations to represent real objects are considered to be "high confidence",
while the remaining four systems are less certain and will require continued
observations for confirmation.Comment: 16 Pages, Accepted to A
Multiplicativity of completely bounded p-norms implies a new additivity result
We prove additivity of the minimal conditional entropy associated with a
quantum channel Phi, represented by a completely positive (CP),
trace-preserving map, when the infimum of S(gamma_{12}) - S(gamma_1) is
restricted to states of the form gamma_{12} = (I \ot Phi)(| psi >< psi |). We
show that this follows from multiplicativity of the completely bounded norm of
Phi considered as a map from L_1 -> L_p for L_p spaces defined by the Schatten
p-norm on matrices; we also give an independent proof based on entropy
inequalities. Several related multiplicativity results are discussed and
proved. In particular, we show that both the usual L_1 -> L_p norm of a CP map
and the corresponding completely bounded norm are achieved for positive
semi-definite matrices. Physical interpretations are considered, and a new
proof of strong subadditivity is presented.Comment: Final version for Commun. Math. Physics. Section 5.2 of previous
version deleted in view of the results in quant-ph/0601071 Other changes
mino
- …