32 research outputs found

    Effects of Simulated Microgravity on Embryonic Stem Cells

    Get PDF
    There have been many studies on the biological effects of simulated microgravity (SMG) on differentiated cells or adult stem cells. However, there has been no systematic study on the effects of SMG on embryonic stem (ES) cells. In this study, we investigated various effects (including cell proliferation, cell cycle distribution, cell differentiation, cell adhesion, apoptosis, genomic integrity and DNA damage repair) of SMG on mouse embryonic stem (mES) cells. Mouse ES cells cultured under SMG condition had a significantly reduced total cell number compared with cells cultured under 1 g gravity (1G) condition. However, there was no significant difference in cell cycle distribution between SMG and 1G culture conditions, indicating that cell proliferation was not impaired significantly by SMG and was not a major factor contributing to the total cell number reduction. In contrast, a lower adhesion rate cultured under SMG condition contributed to the lower cell number in SMG. Our results also revealed that SMG alone could not induce DNA damage in mES cells while it could affect the repair of radiation-induced DNA lesions of mES cells. Taken together, mES cells were sensitive to SMG and the major alterations in cellular events were cell number expansion, adhesion rate decrease, increased apoptosis and delayed DNA repair progression, which are distinct from the responses of other types of cells to SMG

    Production of stem cells with embryonic characteristics from human umbilical cord blood

    No full text
    When will embryonic stem cells reach the clinic? The answer is simple -- not soon! To produce large quantities of homogeneous tissue for transplantation, without feeder layers, and with the appropriate recipient's immunological phenotype, is a significant scientific hindrance, although adult stem (ADS) cells provide an alternative, more ethically acceptable, source. The annual global 100 million human birth rate proposes umbilical cord blood (UCB) as the largest untouched stem cell source, with advantages of naive immune status and relatively unshortened telomere length. Here, we report the world's first reproducible production of cells expressing embryonic stem cell markers, - cord-blood-derived embryonic-like stem cells (CBEs). UCB, after elective birth by Caesarean section, has been separated by sequential immunomagnetic removal of nucleate granulocytes, erythrocytes and haemopoietic myeloid/lymphoid progenitors. After 7 days of high density culture in microflasks, (10(5) cells/ml, IMDM, FCS 10%, thrombopoietin 10 ng/ml, flt3-ligand 50 ng/ml, c-kit ligand 20 ng/ml). CBE colonies formed adherent to the substrata; these were maintained for 6 weeks, then were subcultured and continued for a minimum 13 weeks. CBEs were positive for TRA-1-60, TRA-1-81, SSEA-4, SSEA-3 and Oct-4, but not SSEA-1, indicative of restriction in the human stem cell compartment. The CBEs were also microgravity--bioreactor cultured with hepatocyte growth medium (IMDM, FCS 10%, HGF 20 ng/ml, bFGF 10 ng/ml, EGF 10 ng/ml, c-kit ligand 10 ng/ml). After 4 weeks the cells were found to express characteristic hepatic markers, cytokeratin-18, alpha-foetoprotein and albumin. Thus, such CBEs are a viable human alternative from embryonic stem cells for stem cell research, without ethical constraint and with potential for clinical applications
    corecore