2,061 research outputs found
Phase Separation in Charge-Stabilized Colloidal Suspensions: Influence of Nonlinear Screening
The phase behavior of charge-stabilized colloidal suspensions is modeled by a
combination of response theory for electrostatic interparticle interactions and
variational theory for free energies. Integrating out degrees of freedom of the
microions (counterions, salt ions), the macroion-microion mixture is mapped
onto a one-component system governed by effective macroion interactions. Linear
response of microions to the electrostatic potential of the macroions results
in a screened-Coulomb (Yukawa) effective pair potential and a one-body volume
energy, while nonlinear response modifies the effective interactions [A. R.
Denton, \PR E {\bf 70}, 031404 (2004)]. The volume energy and effective pair
potential are taken as input to a variational free energy, based on
thermodynamic perturbation theory. For both linear and first-order nonlinear
effective interactions, a coexistence analysis applied to aqueous suspensions
of highly charged macroions and monovalent microions yields bulk separation of
macroion-rich and macroion-poor phases below a critical salt concentration, in
qualitative agreement with predictions of related linearized theories [R. van
Roij, M. Dijkstra, and J.-P. Hansen, \PR E {\bf 59}, 2010 (1999); P. B. Warren,
\JCP {\bf 112}, 4683 (2000)]. It is concluded that nonlinear screening can
modify phase behavior but does not necessarily suppress bulk phase separation
of deionized suspensions.Comment: 14 pages of text + 9 figure
Nonlinear Screening and Effective Electrostatic Interactions in Charge-Stabilized Colloidal Suspensions
A nonlinear response theory is developed and applied to electrostatic
interactions between spherical macroions, screened by surrounding microions, in
charge-stabilized colloidal suspensions. The theory describes leading-order
nonlinear response of the microions (counterions, salt ions) to the
electrostatic potential of the macroions and predicts microion-induced
effective many-body interactions between macroions. A linear response
approximation [Phys. Rev. E 62, 3855 (2000)] yields an effective pair potential
of screened-Coulomb (Yukawa) form, as well as a one-body volume energy, which
contributes to the free energy. Nonlinear response generates effective
many-body interactions and essential corrections to both the effective pair
potential and the volume energy. By adopting a random-phase approximation (RPA)
for the response functions, and thus neglecting microion correlations,
practical expressions are derived for the effective pair and triplet potentials
and for the volume energy. Nonlinear screening is found to weaken repulsive
pair interactions, induce attractive triplet interactions, and modify the
volume energy. Numerical results for monovalent microions are in good agreement
with available ab initio simulation data and demonstrate that nonlinear effects
grow with increasing macroion charge and concentration and with decreasing salt
concentration. In the dilute limit of zero macroion concentration,
leading-order nonlinear corrections vanish. Finally, it is shown that nonlinear
response theory, when combined with the RPA, is formally equivalent to the
mean-field Poisson-Boltzmann theory and that the linear response approximation
corresponds, within integral-equation theory, to a linearized hypernetted-chain
closure.Comment: 30 pages, 8 figures, Phys. Rev. E (in press
Stability of Colloidal Quasicrystals
Freezing of charge-stabilized colloidal suspensions and relative stabilities
of crystals and quasicrystals are studied using thermodynamic perturbation
theory. Macroion interactions are modelled by effective pair potentials
combining electrostatic repulsion with polymer-depletion or van der Waals
attraction. Comparing free energies -- counterion terms included -- for
elementary crystals and rational approximants to icosahedral quasicrystals,
parameters are identified for which one-component quasicrystals are stabilized
by a compromise between packing entropy and cohesive energy.Comment: 6 pages, 4 figure
Density-Functional Theory of Quantum Freezing: Sensitivity to Liquid-State Structure and Statistics
Density-functional theory is applied to compute the ground-state energies of
quantum hard-sphere solids. The modified weighted-density approximation is used
to map both the Bose and the Fermi solid onto a corresponding uniform Bose
liquid, assuming negligible exchange for the Fermi solid. The required
liquid-state input data are obtained from a paired phonon analysis and the
Feynman approximation, connecting the static structure factor and the linear
response function. The Fermi liquid is treated by the Wu-Feenberg cluster
expansion, which approximately accounts for the effects of antisymmetry.
Liquid-solid transitions for both systems are obtained with no adjustment of
input data. Limited quantitative agreement with simulation indicates a need for
further improvement of the liquid-state input through practical alternatives to
the Feynman approximation.Comment: IOP-TeX, 21 pages + 7 figures, to appear, J. Phys.: Condens. Matte
Effective Interactions and Volume Energies in Charge-Stabilized Colloidal Suspensions
Charge-stabilized colloidal suspensions can be conveniently described by
formally reducing the macroion-microion mixture to an equivalent one-component
system of pseudo-particles. Within this scheme, the utility of a linear
response approximation for deriving effective interparticle interactions has
been demonstrated [M. J. Grimson and M. Silbert, Mol. Phys. 74, 397 (1991)].
Here the response approach is extended to suspensions of finite-sized macroions
and used to derive explicit expressions for (1) an effective electrostatic pair
interaction between pseudo-macroions and (2) an associated volume energy that
contributes to the total free energy. The derivation recovers precisely the
form of the DLVO screened-Coulomb effective pair interaction for spherical
macroions and makes manifest the important influence of the volume energy on
thermodynamic properties of deionized suspensions. Excluded volume corrections
are implicitly incorporated through a natural modification of the inverse
screening length. By including nonlinear response of counterions to macroions,
the theory may be generalized to systematically investigate effective many-body
interactions.Comment: 13 pages (J. Phys.: Condensed Matter, in press
Density functional theory of freezing for soft interactions in two dimensions
A density functional theory of two-dimensional freezing is presented for a
soft interaction potential that scales as inverse cube of particle distance.
This repulsive potential between parallel, induced dipoles is realized for
paramagnetic colloids on an interface, which are additionally exposed to an
external magnetic field. An extended modified weighted density approximation
which includes correct triplet correlations in the liquid state is used. The
theoretical prediction of the freezing transition is in good agreement with
experimental and simulation data.Comment: 7 pages, 3 figures, submitted 200
Crowding of Polymer Coils and Demixing in Nanoparticle-Polymer Mixtures
The Asakura-Oosawa-Vrij (AOV) model of colloid-polymer mixtures idealizes
nonadsorbing polymers as effective spheres that are fixed in size and
impenetrable to hard particles. Real polymer coils, however, are intrinsically
polydisperse in size (radius of gyration) and may be penetrated by smaller
particles. Crowding by nanoparticles can affect the size distribution of
polymer coils, thereby modifying effective depletion interactions and
thermodynamic stability. To analyse the influence of crowding on polymer
conformations and demixing phase behaviour, we adapt the AOV model to mixtures
of nanoparticles and ideal, penetrable polymer coils that can vary in size. We
perform Gibbs ensemble Monte Carlo simulations, including trial
nanoparticle-polymer overlaps and variations in radius of gyration. Results are
compared with predictions of free-volume theory. Simulation and theory
consistently predict that ideal polymers are compressed by nanoparticles and
that compressibility and penetrability stabilise nanoparticle-polymer mixtures.Comment: 18 pages, 4 figure
Effective Interactions and Volume Energies in Charged Colloids: Linear Response Theory
Interparticle interactions in charge-stabilized colloidal suspensions, of
arbitrary salt concentration, are described at the level of effective
interactions in an equivalent one-component system. Integrating out from the
partition function the degrees of freedom of all microions, and assuming linear
response to the macroion charges, general expressions are obtained for both an
effective electrostatic pair interaction and an associated microion volume
energy. For macroions with hard-sphere cores, the effective interaction is of
the DLVO screened-Coulomb form, but with a modified screening constant that
incorporates excluded volume effects. The volume energy -- a natural
consequence of the one-component reduction -- contributes to the total free
energy and can significantly influence thermodynamic properties in the limit of
low-salt concentration. As illustrations, the osmotic pressure and bulk modulus
are computed and compared with recent experimental measurements for deionized
suspensions. For macroions of sufficient charge and concentration, it is shown
that the counterions can act to soften or destabilize colloidal crystals.Comment: 14 pages, including 3 figure
Orbital Magnetism and Current Distribution of Two-Dimensional Electrons under Confining Potential
The spatial distribution of electric current under magnetic field and the
resultant orbital magnetism have been studied for two-dimensional electrons
under a harmonic confining potential V(\vecvar{r})=m \omega_0^2 r^2/2 in
various regimes of temperature and magnetic field, and the microscopic
conditions for the validity of Landau diamagnetism are clarified. Under a weak
magnetic field (\omega_c\lsim\omega_0, \omega_c being a cyclotron frequency)
and at low temperature (T\lsim\hbar\omega_0), where the orbital magnetic
moment fluctuates as a function of the field, the currents are irregularly
distributed paramagnetically or diamagnetically inside the bulk region. As the
temperature is raised under such a weak field, however, the currents in the
bulk region are immediately reduced and finally there only remains the
diamagnetic current flowing along the edge. At the same time, the usual Landau
diamagnetism results for the total magnetic moment. The origin of this dramatic
temperature dependence is seen to be in the multiple reflection of electron
waves by the boundary confining potential, which becomes important once the
coherence length of electrons gets longer than the system length. Under a
stronger field (\omega_c\gsim\omega_0), on the other hand, the currents in
the bulk region cause de Haas-van Alphen effect at low temperature as
T\lsim\hbar\omega_c. As the temperature gets higher (T\gsim\hbar\omega_c)
under such a strong field, the bulk currents are reduced and the Landau
diamagnetism by the edge current is recovered.Comment: 15 pages, 11 figure
Vitamin and mineral supplementation for prevention of dementia or delaying cognitive decline in people with mild cognitive impairment
This is the protocol for a review and there is no abstract. The objectives are as follows: To evaluate the effects of vitamin and mineral supplementation for prevention of dementia or delaying cognitive decline in people with mild cognitive impairment
- …