43,822 research outputs found
Recommended from our members
Artificial intelligence makes computers lazy
This paper looks at the age-old problem of trying to instil some degree of intelligence in computers. Genetic Algorithms (GA) and Genetic Programming (GP) are techniques that are used to evolve a solution to a problem using processes that mimic natural evolution. This paper reflects on the experience gained while conducting research applying GA and GP to two quite different problems: Medical Diagnosis and Robot Path Planning. An observation is made that when these algorithms are not applied correctly the computer seemingly exhibits lazy behaviour, arriving at a suboptimal solutions. Using examples, this paper shows how this 'lazy' behaviour can be overcome
Recommended from our members
The use of IT to increase nutritional awareness in young children
It has been well documented that obesity amongst young children is on the increase. By the age of 5 the levels of obesity is alarming and is much greater than expected in comparison to the national standards. To address this problem an overall health programme is required encompassing healthy eating and physical activity. However, a radical change of this nature has not shown any long-term benefits and can result in a negative attitude from the child. Therefore, more subtle ways of increasing awareness in children about healthy eating were thought to be the key. Since children are spending an increasing amount of their free time playing computer games it was thought that this would be a good way of introducing them to healthy eating. Therefore, a prototype system is developed and tested to identify whether IT can be used to raise nutritional awareness in young children. The results show that the increase is marginal but the system did encourage discussion about the effects of food amongst a group of children aged between 4-5
Fabrication of metal matrix composites under intensive shearing
Current processing methods for metal matrix composites (MMC) often produces agglomerated reinforced particles in the ductile matrix and also form unwanted brittle secondary phases due to chemical reaction between matrix and the reinforcement. As a result they exhibit extremely low ductility. In addition to the low ductility, the current processing methods are not economical for producing engineering components. In this paper we demonstrate that these problems can be solved to a certain extent by a novel rheo-process. The key step in this process is application of sufficient shear stress on particulate clusters embedded in liquid metal to overcome the average cohesive force of the clusters. Very high shear stress can be achieved by using the specially designed twin-screw machine, developed at Brunel University, in which the liquid undergoes high shear stress and high intensity of turbulence. Experiments with Al alloys and SiC reinforcement reveal that, under high shear stress and turbulence conditions Al liquid penetrates into the clusters and disperse the individual particle within the cluster, thus leading to a uniform microstructure
Generation of Test Vectors for Sequential Cell Verification
For Application Specific Integrated Circuits (ASIC) and System-on-Chip (SOC) designs, Cell - Based Design (CBD) is the most prevalent practice as it guarantees a shorter design cycle, minimizes errors and is easier to maintain. In modern ASIC design, standard cell methodology is practiced with sizable libraries of cells, each containing multiple implementations of the same logic functionality, in order to give the designer differing options based on area, speed or power consumption. For such library cells, thorough verification of functionality and timing is crucial for the overall success of the chip, as even a small error can prove fatal due to the repeated use of the cell in the design. Both formal and simulation based methods are being used in the industry for cell verification. We propose a method using the latter approach that generates an optimized set of test vectors for verification of sequential cells, which are guaranteed to give complete Single Input Change transition coverage with minimal redundancy. Knowledge of the cell functionality by means of the State Table is the only prerequisite of this procedure
Changes in murine anorectum signaling across the life course
Background: Increasing age is associated with an increase in the incidence of chronic constipation and fecal impaction. The contribution of the natural aging process to these conditions is not fully understood. This study examined the effects of increasing age on the function of the murine anorectum.Methods: The effects of increasing age on cholinergic, nitrergic, and purinergic signaling pathways in the murine anorectum were examined using classical organ bath assays to examine tissue function and electrochemical sensing to determine age‐related changes in nitric oxide and acetylcholine release.Key Results: Nitrergic relaxation increased between 3 and 6 months, peaked at 12 months and declined in the 18 and 24 months groups. These changes were in part explained by an age‐related decrease in nitric oxide (NO) release. Cholinergic signaling was maintained with age by an increase in acetylcholine (ACh) release and a compensatory decrease in cholinesterase activity. Age‐related changes in purinergic relaxation were qualitatively similar to nitrergic relaxation although the relaxations were much smaller. Increasing age did not alter the response of the anorectum smooth muscle to exogenously applied ACh, ATP, sodium nitroprusside or KCl. Similarly, there was no change in basal tension developed by the anorectum.Conclusions and Inferences: The decrease in nitrergic signaling with increasing age may contribute to the age‐related fecal impaction and constipation previously described in this model by partially obstructing defecation
Recommended from our members
Processing of advanced Al/SiC particulate metal matrix composites under intensive shearing – A novel rheo process
Particulate Metal Matrix Composites (PMMCs) have attracted interest for application in numerous fields. The current processing methods often produce agglomerated particles in the ductile matrix and as a result these composites exhibit extremely low ductility. The key idea to solve the current problem is to adopt a novel Rheo-process allowing the application of sufficient shear stress () on particulate clusters embedded in liquid metal to overcome the average cohesive force or the tensile strength of the cluster. In this study, cast A356/SiCp composites were produced using a conventional stir casting technique and a novel Rheo-process. The microstructure and properties were evaluated. The adopted Rheo-process significantly improved the distribution of the reinforcement in the matrix. A good combination of improved Ultimate Tensile Strength (UTS) and tensile elongation (ε) is obtained
- …