33 research outputs found

    Interaction-induced localization of anomalously-diffracting nonlinear waves

    Full text link
    We study experimentally the interactions between normal solitons and tilted beams in glass waveguide arrays. We find that as a tilted beam, traversing away from a normally propagating soliton, coincides with the self-defocusing regime of the array, it can be refocused and routed back into any of the intermediate sites due to the interaction, as a function of the initial phase difference. Numerically, distinct parameter regimes exhibiting this behavior of the interaction are identified.Comment: Physical Review Letters, in pres

    Wave instabilities in the presence of non vanishing background in nonlinear Schrodinger systems

    Get PDF
    We investigate wave collapse ruled by the generalized nonlinear Schroedinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign
    corecore