161 research outputs found

    Magnetic phase transitions in SmCoAsO

    Get PDF
    Magnetization, x-ray diffraction and specific-heat measurements reveal that SmCoAsO undergoes three magnetic phase transitions. A ferromagnetic transition attributed to the Co ions, emerges at TC=57 K with a small saturation moment of 0.15muB/Co. Reorientation of the Co moment to an antiferromagnetic state is obtained at TN2=45 K. The relative high paramagnetic effective moment Peff=1.57 MuB/Co indicates an itinerant ferromagnetic state of the Co sublattice. The third magnetic transition at TN1=5 K is observed clearly in the specific-heat study only. Both magnetic and 57Fe Mossbauer studies show that substitution of small quantities of Fe for Co was unsuccessful.Comment: 10pages text+Figures: comments welcome ([email protected]

    High pressure high temperature (HPHT) synthesis and magnetization of Magneto-Superconducting RuSr2(LnCe2)Cu2O12.25 (Ru-1232) compounds (Ln = Y and Dy)

    Full text link
    RuSr2(LnCe2)Cu2O12.25 (Ru-1232) compounds with Ln = Y and Dy being synthesized by high pressure high temperature (6GPa, 12000C) solid state synthesis route do crystallize in space group P4/mmm in near single phase form with small quantities of SrRuO3 and RuSr2(RE1.5Ce0.5)Cu2O10 (Ru-1222). Both samples exhibit magnetic transitions (Tmag.) at ~90 K with significant branching of zfc (zero-field-cooled) and fc (field-cooled) magnetization and a sharp cusp in zfc at ~ 70 K, followed by superconducting transitions at ~ 30 K. Both compounds show typical ferromagnetic hysteresis loops in magnetic moment (M) versus field (H) magnetization right upto Tmag. i.e. < 90K. To our knowledge these are the first successfully synthesized Ru-1232 compounds in near single phase with lanthanides including Y and Dy. The results are compared with widely reported Gd/Ru-1222 and Ru-1212 (RuSr2GdCu2O8) compounds. In particular, it seems that the Ru moments magnetic ordering temperature (Tmag.) scales with the c-direction distance between magnetic RuO6 octahedras in Ru-1212/1222 or 1232 systems.Comment: 15 pages of TEXT and Fig

    Synthesis of SmFeAsO by an Easy and Versatile Route and its Physical Property Characterization

    Get PDF
    We report synthesis, structure, electrical transport and heat capacity of SmFeAsO. The title compound is synthesized by one-step encapsulation of stoichiometric FeAs, Sm, and Sm2O3 in an evacuated (10-5 Torr) quartz tube by prolong (72 hours) annealing at 1100oC. The as synthesized compound is crystallized in tetragonal structure with P4/nmm space group having lattice parameters a = 3.93726(33) A and c = 8.49802(07) A. The resistance (R-T) measurements on the compound exhibited ground state spin-density-wave (SDW)-like metallic steps below 140 K. Heat capacity CP(T) measurements on the title compound, showed an anomaly at around 140 K, which is reminiscent of the SDW ordering of the compound. At lower temperatures the CP(T) shows a clear peak at around 4.5 K. At lower temperature below 20 K, Cp(T) is also measured under an applied field of 7 Tesla. It is concluded that the CP(T) peak at 4.5 K is due to the anti-ferromagnetic(AFM) ordering of Sm3+ spins. These results are in confirmation with ordering of Sm in Sm2-xCexCuO4.Comment: 9 pages Text + Figs Contact Author ([email protected]

    Non-magnetic pair-breaking effect on La(Fe_{1-x}Zn_{x})AsO_{0.85} studied by NMR and NQR

    Get PDF
    75^{75}As and 139^{139}La NMR and nuclear quadrupole resonance (NQR) studies on Zn-substituted LaFeAsO0.85_{0.85} have been performed to investigate the Zn-impurity effects microscopically. Although superconductivity in LaFeAsO0.85_{0.85} disappears by 3% Zn substitution, we found that NMR/NQR spectra and NMR physical quantities in the normal state are hardly changed, indicating that the crystal structure and electronic states are not modified by Zn substitution. Our results suggest that the suppression of superconductivity by Zn substitution is not due to the change of the normal-state properties, but due to strong non-magnetic pair-breaking effect to superconductivity.Comment: 5 pages, 4 figures, This paper was chosen as "Paper of Editors' Suggestion

    Optical phonons in new ordered perovskite Sr2Cu(Re0.69Ca0.31) Oy system observed by infrared reflectance spectroscopy

    Full text link
    We report infrared reflectivity spectra for a new correlated cupric oxide system Sr2Cu(Re0.69Ca0.31)Oy with y ~ 0.6 at several temperatures ranging between 8 and 380 K. The reflectivity spectrum at 300 K comprises of several optical phonons. A couple of residual bands located around 315 and 653 cm-1 exhibit exceptionally large intensity as compared to the other ones. The overall reflectivity spectrum lifts up slightly with increasing temperature. The energy and damping factor of transverse-optical phonons are determined by fitting the imaginary dielectric constant by Lorentz oscillator model and discussed as a function of temperature in terms of lattice anharmonicity.Comment: 9 pages, 3 figures, presented at ISS2005, to appear in Physica
    corecore