140 research outputs found
Werner syndrome protein limits MYC-induced cellular senescence - Supplementary Materials Only
The MYC oncoprotein is a transcription factor that coordinates cell growth and division. MYC overexpression exacerbates genomic instability and sensitizes cells to apoptotic stimuli. Here we demonstrate that MYC directly stimulates transcription of the human Werner syndrome gene, WRN, which encodes a conserved RecQ helicase. Loss-of-function mutations in WRN lead to genomic instability, an elevated cancer risk, and premature cellular senescence. The overexpression of MYC in WRN syndrome fibroblasts or after WRN depletion from control fibroblasts led to rapid cellular senescence that could not be suppressed by hTERT expression. We propose that WRN up-regulation by MYC may promote MYC-driven tumorigenesis by preventing cellular senescence
NirK and nirS Nitrite reductase genes from non-agricultural forest soil bacteria in Thailand
The genetic heterogeneity of the nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in a non-agricultural forest soil in Thailand was investigated using soil samples from the Plant Germplasm-Royal Initiation Project area in Kanchanaburi Province, Thailand. Soil bacteria were screened for denitrification activity and 13 (from 211) positive isolates were obtained and further evaluated for their ability to reduce nitrate and to accumulate or reduce nitrite. Three species with potentially previously unreported denitrifying activities were recorded. Analysis of the partial nirK and nirS sequences of these 13 strains revealed a diverse sequence heterogeneity in these two genes within the same environment and even potentially within the same host species, the potential existence of lateral gene transfer and the first record of both nirK and nirS homologues in one bacterial species. Finally, isolates of two species of bacteria (Corynebacterium propinquum and Micrococcus lylae) are recorded as denitrifiers for the first time
Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas
DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy
Industrial Structure and Political Outcomes: The Case of the 2016 US Presidential Election
This paper analyzes the US presidential election of 2016, examining the patterns of industrial structure and party competition in both the major party primaries and the general election. It attempts to identify the new, historically specific factors that led to the upheavals, especially the steady growth of a “dual economy” that locks more and more Americans out of the middle class. It draws extensively on a newly assembled, more comprehensive database to identify the specific political forces that coalesced around each candidate, including the various stages of the Trump campaign
Exome-wide association study to identify rare variants influencing COVID-19 outcomes : Results from the Host Genetics Initiative
Publisher Copyright: Copyright: © 2022 Butler-Laporte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.Peer reviewe
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to
genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility
and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component.
Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci
(eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene),
including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform
genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer
SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the
diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas
DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in 3c20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy. Knijnenburg et al. present The Cancer Genome Atlas (TCGA) Pan-Cancer analysis of DNA damage repair (DDR) deficiency in cancer. They use integrative genomic and molecular analyses to identify frequent DDR alterations across 33 cancer types, correlate gene- and pathway-level alterations with genome-wide measures of genome instability and impaired function, and demonstrate the prognostic utility of DDR deficiency scores
- …