223 research outputs found
Scale-freeness for networks as a degenerate ground state: A Hamiltonian formulation
The origin of scale-free degree distributions in the context of networks is
addressed through an analogous non-network model in which the node degree
corresponds to the number of balls in a box and the rewiring of links to balls
moving between the boxes. A statistical mechanical formulation is presented and
the corresponding Hamiltonian is derived. The energy, the entropy, as well as
the degree distribution and its fluctuations are investigated at various
temperatures. The scale-free distribution is shown to correspond to the
degenerate ground state, which has small fluctuations in the degree
distribution and yet a large entropy. We suggest an implication of our results
from the viewpoint of the stability in evolution of networks.Comment: 7 pages, 3 figures. To appear in Europhysics lette
Resistance scaling at the Kosterlitz-Thouless transition
We study the linear resistance at the Kosterlitz-Thouless transition by Monte
Carlo simulation of vortex dynamics. Finite size scaling analysis of our data
show excellent agreement with scaling properties of the Kosterlitz-Thouless
transition. We also compare our results for the linear resistance with
experiments. By adjusting the vortex chemical potential to an optimum value,
the resistance at temperatures above the transition temperature agrees well
with experiments over many decades.Comment: 7 pages, 4 postscript figures included, LATEX, KTH-CMT-94-00
Neutral theory of chemical reaction networks
To what extent do the characteristic features of a chemical reaction network
reflect its purpose and function? In general, one argues that correlations
between specific features and specific functions are key to understanding a
complex structure. However, specific features may sometimes be neutral and
uncorrelated with any system-specific purpose, function or causal chain. Such
neutral features are caused by chance and randomness. Here we compare two
classes of chemical networks: one that has been subjected to biological
evolution (the chemical reaction network of metabolism in living cells) and one
that has not (the atmospheric planetary chemical reaction networks). Their
degree distributions are shown to share the very same neutral
system-independent features. The shape of the broad distributions is to a large
extent controlled by a single parameter, the network size. From this
perspective, there is little difference between atmospheric and metabolic
networks; they are just different sizes of the same random assembling network.
In other words, the shape of the degree distribution is a neutral
characteristic feature and has no functional or evolutionary implications in
itself; it is not a matter of life and death.Comment: 13 pages, 8 figure
Phase Diagram of the Two Dimensional Lattice Coulomb Gas
We use Monte Carlo simulations to map out the phase diagram of the two
dimensional Coulomb gas on a square lattice, as a function of density and
temperature. We find that the Kosterlitz-Thouless transition remains up to
higher charge densities than has been suggested by recent theoretical
estimates.Comment: 4 pages, including 6 in-line eps figure
Magnetic-field dependence of dynamical vortex response in two-dimensional Josephson junction arrays and superconducting films
The dynamical vortex response of a two-dimensional array of the resistively
shunted Josephson junctions in a perpendicular magnetic field is inferred from
simulations. It is found that, as the magnetic field is increased at a fixed
temperature, the response crosses over from normal to anomalous, and that this
crossover can be characterized by a single dimensionless parameter. It is
described how this crossover should be reflected in measurements of the complex
impedance for Josephson junction arrays and superconducting films.Comment: 4 pages including 5 figures in two columns, final versio
Exact Calculation of the Vortex-Antivortex Interaction Energy in the Anisotropic 3D XY-model
We have developed an exact method to calculate the vortex-antivortex
interaction energy in the anisotropic 3D-XY model. For this calculation, dual
transformation which is already known for the 2D XY-model was extended. We
found an explicit form of this interaction energy as a function of the
anisotropic ratio and the separation between the vortex and antivortex
located on the same layer. The form of interaction energy is at the
small limi t but is proportional to at the opposite limit. This form of
interaction energ y is consistent with the upper bound calculation using the
variational method by Cataudella and Minnhagen.Comment: REVTeX 12 pages, In print for publication in Phys. Rev.
The Blind Watchmaker Network: Scale-freeness and Evolution
It is suggested that the degree distribution for networks of the
cell-metabolism for simple organisms reflects an ubiquitous randomness. This
implies that natural selection has exerted no or very little pressure on the
network degree distribution during evolution. The corresponding random network,
here termed the blind watchmaker network has a power-law degree distribution
with an exponent gamma >= 2. It is random with respect to a complete set of
network states characterized by a description of which links are attached to a
node as well as a time-ordering of these links. No a priory assumption of any
growth mechanism or evolution process is made. It is found that the degree
distribution of the blind watchmaker network agrees very precisely with that of
the metabolic networks. This implies that the evolutionary pathway of the
cell-metabolism, when projected onto a metabolic network representation, has
remained statistically random with respect to a complete set of network states.
This suggests that even a biological system, which due to natural selection has
developed an enormous specificity like the cellular metabolism, nevertheless
can, at the same time, display well defined characteristics emanating from the
ubiquitous inherent random element of Darwinian evolution. The fact that also
completely random networks may have scale-free node distributions gives a new
perspective on the origin of scale-free networks in general.Comment: 5 pages, 3 figure
Hierarchy Measures in Complex Networks
Using each node's degree as a proxy for its importance, the topological
hierarchy of a complex network is introduced and quantified. We propose a
simple dynamical process used to construct networks which are either maximally
or minimally hierarchical. Comparison with these extremal cases as well as with
random scale-free networks allows us to better understand hierarchical versus
modular features in several real-life complex networks. For random scale-free
topologies the extent of topological hierarchy is shown to smoothly decline
with -- the exponent of a degree distribution -- reaching its highest
possible value for and quickly approaching zero for .Comment: 4 pages, 4 figure
Vortex Fluctuations in High-Tc Films: Flux Noise Spectrum and Complex Impedance
The flux noise spectrum and complex impedance for a 500 {\AA} thick YBCO film
are measured and compared with predictions for two dimensional vortex
fluctuations. It is verified that the complex impedance and the flux noise
spectra are proportional to each other, that the logarithm of the flux noise
spectra for different temperatures has a common tangent with slope , and that the amplitude of the noise decreases as , where is
the height above the film at which the magnetic flux is measured. A crossover
from normal to anomalous vortex diffusion is indicated by the measurements and
is discussed in terms of a two-dimensional decoupling.Comment: 5 pages including 4 figures in two columns, to appear in Phys. Rev.
Let
Symmetry-allowed phase transitions realized by the two-dimensional fully frustrated XY class
A 2D Fully Frustrated XY(FFXY) class of models is shown to contain a new
groundstate in addition to the checkerboard groundstates of the standard 2D
FFXY model. The spin configuration of this additional groundstate is obtained.
Associated with this groundstate there are additional phase transitions. An
order parameter accounting for these new transitions is proposed. The
transitions associated with the new order parameter are suggested to be similar
to a 2D liquid-gas transition which implies Z_2-Ising like transitions. This
suggests that the class of 2D FFXY models belongs within a U(1) x Z_2 x
Z_2-designation of possible transitions, which implies that there are seven
different possible single and combined transitions. MC-simulations for the
generalized fully frustrated XY (GFFXY) model on a square lattice are used to
investigate which of these possibilities can be realized in practice: five of
the seven are encountered. Four critical points are deduced from the
MC-simulations, three consistent with central charge c=3/2 and one with c=1.
The implications for the standard 2D FFXY-model are discussed in particular
with respect to the long standing controversy concerning the characteristics of
its phase transitions.Comment: 8 pages, 8 figure
- …