37 research outputs found

    Comparative analysis of microstructure, mechanical, and corrosion properties of biodegradable Mg-3Y alloy prepared by selective laser melting and spark plasma sintering

    No full text
    This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques – spark plasma sintering (SPS) and selective laser melting (SLM). The powder material was consolidated by both methods utilising optimised parameters, which led to very low porosity (∼0.3%) in the SLM material and unmeasurably low porosity in the SPS material. The main aim of the study was the thorough microstructure characterisation and interrelation between the microstructure and the functional properties, such as mechanical strength, deformability, and corrosion resistance. Both materials showed comparable strength of ∼110 MPa in tension and compression and relatively good deformability of ∼9% and ∼21% for the SLM and SPS materials, respectively. The corrosion resistance of the SPS material in 0.1 M NaCl solution was superior to the SLM one and comparable to the conventional extruded material. The digital image correlation during loading and the cross-section analysis of the corrosion layers revealed that the residual porosity and large strained grains have the dominant negative effect on the functional properties of the SLM material. On the other hand, one of the primary outcomes of this study is that the SPS consolidation method is very effective in the preparation of the W3 biodegradable alloy, resulting in material with convenient mechanical and degradation properties that might find practical applications

    Interphase boundary layer-dominated strain mechanisms in Cu<sup>+</sup> implanted Zr-Nb nanoscale multilayers

    No full text
    Sputter-deposited Zr/Nb nanoscale metallic multilayers with a periodicity of 27 (thin) and 96 nm (thick) were subjected to Cu+implantation with low and high fluences and then studied using various experimental techniques in combination with DFT calculations. After Cu+ implantation, the thinner multilayer exhibited a tensile strain along c-axis in Nb layers and a compressive strain in Zr layers, while the thicker multilayer showed a compressive strain in both layers. The strain is higher in the thin multilayer and increases for higher fluences. We developed a mathematical method for the fundamental understanding of the deformation mechanisms in metallic multilayers subjected to radiation damage. In the model, the cumulative strain within a layer is described as the combination of two contributions coming from the interfacial region and the inner region of the layers. The semi-analytical model predicts that the interfacial strain is dominant and extends over a certain region around the interface. Predictions are well supported by ab-initio calculations which show that in the vicinity of the interface and in the Zr side, vacancies and interstitials (low energy barriers) exhibit high mobility compared to the Nb side, thus resulting in a high recombination rate. As a consequence, less strain occurs in the Zr side of the interface compared to the Nb side. The density and distribution of various types of defects along the ion profile (low and high damaged regions) are obtained by combining DFT results and the predictions of the model.</p
    corecore