9,201 research outputs found
The collapse of a spherical cavity in a compressible liquid
This paper presents numerical solutions for the flow in the vicinity of a collapsing spherical bubble in water. The bubble is assumed to contain a small amount of gas and the solutions are taken beyond the point where the bubble reaches its minimum radius up to the stage where a pressure wave forms and propagates outwards into the liquid. The motion up to the point where the minimum radius is attained, is found by solving the equations of motion both in the Lagrangian and in the characteristic forms. These are in good agreement with each other and also with the approximate theory of Gilmore which is demonstrated to be accurate over a wide range of Mach number. The liquid flow after the minimum radius has been attained is determined from a solution of the Lagrangian equations. It is shown that an acoustic approximation is quite valid for fairly high pressures and this fact is used to determine the peak intensity of the pressure wave at a distance from the center of collapse. It is estimated in the case of typical cavitation bubbles that such intensities are sufficient to cause cavitation damage
Flow of vapour in a liquid enclosure
A solution is developed for the flow of a vapour in a liquid enclosure in which different portions of the liquid wall have different temperatures. It is shown that the vapour pressure is very nearly uniform in the enclosure, and an expression for the net vapour flux is deduced. This pressure and the net vapour flux are readily expressed in terms of the temperatures on the liquid boundary. Explicit results are given for simple liquid boundaries: two plane parallel walls at different temperatures and concentric spheres and cylinders at different temperatures. Some comments are also made regarding the effects of unsteady liquid temperatures and of motions of the boundaries. The hemispherical vapour cavity is also discussed because of its applicability to the nucleate boiling problem
Reply to comments on "General analysis of the stability of superposed fluids"
Previous results by Plesset and Hsieh on the effects of compressibility for Rayleigh–Taylor instability are shown to be valid, and an alternative brief deduction is given
Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary
Vapour bubble collapse problems lacking spherical symmetry are solved here using a numerical method designed especially for these problems. Viscosity and compressibility in the liquid are neglected. Two specific cases of initially spherical bubbles collapsing near a plane solid wall were simulated: a bubble initially in contact with the wall, and a bubble initially half its radius from the wall at the closest point. It is shown that the bubble develops a jet directed towards the wall rather early in the collapse history. Free surface shapes and velocities are presented at various stages in the collapse. Velocities are scaled like (Δp/ρ)^½ where ρ is the density of the liquid and Δp is the constant difference between the ambient liquid pressure and the pressure in the cavity. For Δp/ρ=10^6cm^2/sec^2 ≈ 1 atm/density of water
the jet had a speed of about 130m/sec in the first case and 170m/sec in the second when it struck the opposite side of the bubble. Such jet velocities are of a magnitude which can explain cavitation damage. The jet develops so early in the bubble collapse history that compressibility effects in the liquid and the vapour are not important
Casimir Energies and Pressures for -function Potentials
The Casimir energies and pressures for a massless scalar field associated
with -function potentials in 1+1 and 3+1 dimensions are calculated. For
parallel plane surfaces, the results are finite, coincide with the pressures
associated with Dirichlet planes in the limit of strong coupling, and for weak
coupling do not possess a power-series expansion in 1+1 dimension. The relation
between Casimir energies and Casimir pressures is clarified,and the former are
shown to involve surface terms. The Casimir energy for a -function
spherical shell in 3+1 dimensions has an expression that reduces to the
familiar result for a Dirichlet shell in the strong-coupling limit. However,
the Casimir energy for finite coupling possesses a logarithmic divergence first
appearing in third order in the weak-coupling expansion, which seems
unremovable. The corresponding energies and pressures for a derivative of a
-function potential for the same spherical geometry generalizes the TM
contributions of electrodynamics. Cancellation of divergences can occur between
the TE (-function) and TM (derivative of -function) Casimir
energies. These results clarify recent discussions in the literature.Comment: 16 pages, 1 eps figure, uses REVTeX
Viscous effects in Rayleigh-Taylor instability
A simple, physical approximation is developed for the effect of viscosity for stable interfacial waves and for the unstable interfacial waves which correspond to Rayleigh‐Taylor instability. The approximate picture is rigorously justified for the interface between a heavy fluid (e.g., water) and a light fluid (e.g., air) with negligible dynamic effect. The approximate picture may also be rigorously justified for the case of two fluids for which the differences in density and viscosity are small. The treatment of the interfacial waves may easily be extended to the case where one of the fluids has a small thickness; that is, the case in which one of the fluids is bounded by a free surface or by a rigid wall. The theory is used to give an explanation of the bioconvective patterns which have been observed with cultures of microorganisms which have negative geotaxis. Since such organisms tend to collect at the surface of a culture and since they are heavier than water, the conditions for Rayleigh‐Taylor instability are met. It is shown that the observed patterns are quite accurately explained by the theory. Similar observations with a viscous liquid loaded with small glass spheres are described. A behavior similar to the bioconvective patterns with microorganisms is found and the results are also explained quantitatively by Rayleigh‐Taylor instability theory for a continuous medium with viscosity
Reply to Comments of P. W. Smith, Jr.
In his comments on this subject, Smith has put
emphasis on the special nature of the plane-wave
solution in acoustic problems. It is perhaps unnecessary
to defend the importance of the plane-wave
solution in a linear theory
Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary
Vapor bubble collapse problems lacking spherical symmetry are solved here using a numerical method designed especially for these problems. Viscosity and compressibility in the liquid are neglected. The method uses finite time steps and features an iterative technique for applying the boundary conditions at infinity directly to the liquid at a finite distance from the free surface. Two specific cases of initially spherical bubbles collapsing near a plane solid wall were simulated: a bubble initially in contact with the wall, and a bubble initially half its radius from the wall at the closest point. It is shown that the bubble develops a jet directed towards the wall rather early in the collapse history. Free surface shapes and velocities are presented at various stages in the collapse. Velocities are scaled like (Δp/ρ)^1/2 where ρ is the density of the liquid and Δp is the constant difference between the ambient liquid pressure and the pressure in the cavity. For Δp/ρ = 10^6 (cm/sec)^2 ~ 1 atm./density of water the jet had a speed of about 130 m/sec in the first case and 170 m/sec in the second when it struck the opposite side of the bubble. Such jet velocities are of a magnitude which can explain cavitation damage. The jet develops so early in the bubble collapse history that compressibility effects in the liquid and the vapor are not important
- …