9 research outputs found

    Molecular haplotyping of genetic markers 10 kb apart by allele-specific long-range PCR

    No full text

    Molecular haplotyping of genetic markers 10 kb apart by allele-specific long-range PCR.

    No full text
    Haplotypes, combinations of polymorphic markers in a chromosome, are critical for genome diversity research. However, their utility in population samplings is compromised by uncertain linkage phase determinations from unrelated individuals. Molecular haplotyping accomplishes direct phase determination by generation of hemizygous templates from diploid genomic samples. We report molecular haplotyping by allele-specific long-range PCR of two markers 9.5 kb apart at the CD4 locus: a bi-allelic Alu deletion and a multi-allelic repeat. We verified CD4 molecular haplotypes by classical Mendelian analysis. Molecular haplotyping should prove useful in mapping disease genes and in establishing founder effects

    Haplofreq - estimating haplotype frequencies efficiently

    No full text
    A commonly used tool in disease association studies is the search for discrepancies between the haplotype distribution in the case and control populations. In order to find this discrepancy, the haplotypes frequency in each of the populations is estimated from the genotypes. We present a new method HAPLOFREQ to estimate haplotype frequencies over a short genomic region given the genotypes or haplotypes with missing data or sequencing errors. Our approach incorporates a maximum likelihood model based on a simple random generative model which assumes that the genotypes are independently sampled from the population. We first show that if the phased haplotypes are given, possibly with missing data, we can estimate the frequency of the haplotypes in the population by finding the global optimum of the likelihood function in polynomial time. If the haplotypes are not phased, finding the maximum value of the likelihood function is NP-hard. In this case we define an alternative likelihood function which can be thought of as a relaxed likelihood function. We show that the maximum relaxed likelihood can be found in polynomial time, and that the optimal solution of the relaxed likelihood approaches asymptotically to the haplotype frequencies in the population. In contrast to previous approaches, our algorithms are guaranteed to converge in polynomial time to a global maximum of the different likelihood functions. We compared the performance of our algorithm to the widely used program PHASE, and we found that our estimates are at least 10 % more accurate than PHASE and about ten times faster than PHASE. Our techniques involve new algorithms in convex optimization. These algorithms may be of independent interest. Particularly, they may be helpful in other maximum likelihood problems arising from survey sampling

    The impact of genotyping error on haplotype reconstruction and frequency estimation

    No full text
    The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map
    corecore