221 research outputs found
Angiotensin-(1–7) and the G Protein-Coupled Receptor Mas Are Key Players in Renal Inflammation
Angiotensin (Ang) II mediates pathophysiologial changes in the kidney. Ang-(1–7) by interacting with the G protein-coupled receptor Mas may also have important biological activities
Increased Urinary Angiotensin-Converting Enzyme 2 in Renal Transplant Patients with Diabetes
Angiotensin-converting enzyme 2 (ACE2) is expressed in the kidney and may be a renoprotective enzyme, since it converts angiotensin (Ang) II to Ang-(1-7). ACE2 has been detected in urine from patients with chronic kidney disease. We measured urinary ACE2 activity and protein levels in renal transplant patients (age 54 yrs, 65% male, 38% diabetes, n = 100) and healthy controls (age 45 yrs, 26% male, n = 50), and determined factors associated with elevated urinary ACE2 in the patients. Urine from transplant subjects was also assayed for ACE mRNA and protein. No subjects were taking inhibitors of the renin-angiotensin system. Urinary ACE2 levels were significantly higher in transplant patients compared to controls (p = 0.003 for ACE2 activity, and p≤0.001 for ACE2 protein by ELISA or western analysis). Transplant patients with diabetes mellitus had significantly increased urinary ACE2 activity and protein levels compared to non-diabetics (p<0.001), while ACE2 mRNA levels did not differ. Urinary ACE activity and protein were significantly increased in diabetic transplant subjects, while ACE mRNA levels did not differ from non-diabetic subjects. After adjusting for confounding variables, diabetes was significantly associated with urinary ACE2 activity (p = 0.003) and protein levels (p<0.001), while female gender was associated with urinary mRNA levels for both ACE2 and ACE. These data indicate that urinary ACE2 is increased in renal transplant recipients with diabetes, possibly due to increased shedding from tubular cells. Urinary ACE2 could be a marker of renal renin-angiotensin system activation in these patients
Recommended from our members
Queering Peace and Security: Recommendations to the United Nations Independent Expert on Sexual Orientation and Gender Identity
Alcohol Consumption and Dietary Patterns: The FinDrink Study
The aim of this population-based study was to investigate differences in dietary patterns in relation to the level of alcohol consumption among Finnish adults. This study was part of the FinDrink project, an epidemiologic study on alcohol use among Finnish population. It utilized data from the Kuopio Ischaemic Heart Disease Risk Factor Study. A total of 1720 subjects comprising of 816 men and 904 women aged 53–73 years were included in the study in 1998–2001. Food intake was collected via a 4-day food diary method. Self-reported alcohol consumption was assessed with quantity-frequency method based on the Nordic Alcohol Consumption Inventory. Weekly alcohol consumption was categorized into three groups: non-drinkers (<12 grams), moderate drinkers (12–167.9 grams for men, 12–83.9 grams for women) and heavy drinkers (≥168 grams for men, ≥84 grams for women). Data were analyzed for men and women separately using multiple linear regression models, adjusted for age, occupational status, marital status, smoking, body mass index and leisure time physical activity. In women, moderate/heavy drinkers had lower fibre intake and moderate drinkers had higher vitamin D intake than non-drinkers. Male heavy drinkers had lower fibre, retinol, calcium and iron intake, and moderate/heavy drinkers had higher vitamin D intake than non-drinkers. Fish intake was higher among women moderate drinkers and men moderate/heavy drinkers than non-drinkers. In men, moderate drinkers had lower fruit intake and heavy drinkers had lower milk intake than non-drinkers. Moderate drinkers had higher energy intake from total fats and monosaturated fatty acids than non-drinkers. In contrast, energy intake from carbohydrates was lower among moderate/heavy drinkers than non-drinkers. In conclusion, especially male heavy drinkers had less favorable nutritional intake than moderate and non-drinkers. Further studies on the relationship between alcohol consumption and dietary habits are needed to plan a comprehensive dietary intervention programs in future
Low levels of vitamin C in dialysis patients is associated with decreased prealbumin and increased C-reactive protein
<p>Abstract</p> <p>Background</p> <p>Subclinical inflammation is a common phenomenon in patients on either continuous ambulatory peritoneal dialysis (CAPD) or maintenance hemodialysis (MHD). We hypothesized that vitamin C had anti-inflammation effect because of its electron offering ability. The current study was designed to test the relationship of plasma vitamin C level and some inflammatory markers.</p> <p>Methods</p> <p>In this cross-sectional study, 284 dialysis patients were recruited, including 117 MHD and 167 CAPD patients. The demographics were recorded. Plasma vitamin C was measured by high-performance liquid chromatography. And we also measured body mass index (BMI, calculated as weight/height<sup>2</sup>), Kt/V, serum albumin, serum prealbumin, high-sensitivity C-reactive protein (hsCRP), ferritin, hemoglobin. The relationships between vitamin C and albumin, pre-albumin and hsCRP levels were tested by Spearman correlation analysis and multiple regression analysis.</p> <p>Patients were classified into three subgroups by vitamin C level according to previous recommendation <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr></abbrgrp> in MHD and CAPD patients respectively: group A: < 2 ug/ml (< 11.4 umol/l, deficiency), group B: 2-4 ug/ml (11.4-22.8 umol/l, insufficiency) and group C: > 4 ug/ml (> 22.8 umol/l, normal and above).</p> <p>Results</p> <p>Patients showed a widely distribution of plasma vitamin C levels in the total 284 dialysis patients. Vitamin C deficiency (< 2 ug/ml) was present in 95(33.45%) and insufficiency (2-4 ug/ml) in 88(30.99%). 73(25.70%) patients had plasma vitamin C levels within normal range (4-14 ug/ml) and 28(9.86%) at higher than normal levels (> 14 ug/ml). The similar proportion of different vitamin C levels was found in both MHD and CAPD groups.</p> <p>Plasma vitamin C level was inversely associated with hsCRP concentration (Spearman r = -0.201, P = 0.001) and positively associated with prealbumin (Spearman r = 0.268, P < 0.001), albumin levels (Spearman r = 0.161, P = 0.007). In multiple linear regression analysis, plasma vitamin C level was inversely associated with log<sub>10</sub>hsCRP (P = 0.048) and positively with prealbumin levels (P = 0.002) adjusted for gender, age, diabetes, modality of dialysis and some other confounding effects.</p> <p>Conclusions</p> <p>The investigation indicates that vitamin C deficiency is common in both MHD patients and CAPD patients. Plasma vitamin C level is positively associated with serum prealbumin level and negatively associated with hsCRP level in both groups. Vitamin C deficiency may play an important role in the increased inflammatory status in dialysis patients. Further studies are needed to determine whether inflammatory status in dialysis patients can be improved by using vitamin C supplements.</p
Application of Direct Renin Inhibition to Chronic Kidney Disease
Chronic kidney disease has serious implications with a high risk for progressive loss of renal function, increased cardiovascular events as well as a substantial financial burden. The renin-angiotensin-aldosterone system (RAAS) is activated in chronic kidney disease, especially in diabetes and hypertension, which are the leading causes of chronic kidney disease. Angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) decrease the rate of progression of diabetic and non-diabetic nephropathy and are recommended therapy for chronic kidney disease.
Key clinical trials supporting the use of ACE inhibitors and ARBs in chronic kidney disease are discussed. Recent developments in our understanding of RAAS biology and the use of direct renin inhibition are reviewed in the context of their potential impact on the prevention and management of chronic kidney disease.
Despite the clinical success of ACE inhibitors and ARBs the rates of mortality and progression to renal failure remain high in these patient populations. ACE inhibitor or ARB monotherapy, in doses commonly used in clinical practice does not result in complete suppression of the RAAS. Aliskiren, a direct renin inhibitor, offers a novel approach to inhibit the RAAS in chronic kidney disease.
High dose ARB therapy or combination therapies with ACE inhibitors and ARBs have shown beneficial effects on surrogate markers of chronic kidney disease. Early data based on urinary protein excretion rates as a surrogate marker for renal function suggest a possibly novel role for aliskiren alone or in combination with ARBs in chronic kidney disease
Podocyte-Specific Overexpression of Wild Type or Mutant Trpc6 in Mice Is Sufficient to Cause Glomerular Disease
Mutations in the TRPC6 calcium channel (Transient receptor potential channel 6) gene have been associated with familiar forms of Focal and Segmental Glomerulosclerosis (FSGS) affecting children and adults. In addition, acquired glomerular diseases are associated with increased expression levels of TRPC6. However, the exact role of TRPC6 in the pathogenesis of FSGS remains to be elucidated. In this work we describe the generation and phenotypic characterization of three different transgenic mouse lines with podocyte-specific overexpression of the wild type or any of two mutant forms of Trpc6 (P111Q and E896K) previously related to FSGS. Consistent with the human phenotype a non-nephrotic range of albuminuria was detectable in almost all transgenic lines. The histological analysis demonstrated that the transgenic mice developed a kidney disease similar to human FSGS. Differences of 2–3 folds in the presence of glomerular lesions were found between the non transgenic and transgenic mice expressing Trpc6 in its wild type or mutant forms specifically in podocytes. Electron microscopy of glomerulus from transgenic mice showed extensive podocyte foot process effacement. We conclude that overexpression of Trpc6 (wild type or mutated) in podocytes is sufficient to cause a kidney disease consistent with FSGS. Our results contribute to reinforce the central role of podocytes in the etiology of FSGS. These mice constitute an important new model in which to study future therapies and outcomes of this complex disease
Animal models of cardiorenal syndrome: a review
The incidence of heart failure and renal failure is increasing and is associated with poor prognosis. Moreover, these conditions do often coexist and this coexistence results in worsened outcome. Various mechanisms have been proposed as an explanation of this interrelation, including changes in hemodynamics, endothelial dysfunction, inflammation, activation of renin-angiotensin-aldosterone system, and/or sympathetic nervous system. However, the exact mechanisms initializing and maintaining this interaction are still unknown. In many experimental studies on cardiac or renal dysfunction, the function of the other organ was either not addressed or the authors failed to show any decline in its function despite histological changes. There are few studies in which the dysfunction of both heart and kidney function has been described. In this review, we discuss animal models of combined cardiorenal dysfunction. We show that translation of the results from animal studies is limited, and there is a need for new and better models of the cardiorenal interaction to improve our understanding of this syndrome. Finally, we propose several requirements that a new animal model should meet to serve as a tool for studies on the cardiorenal syndrome
- …