2,992 research outputs found

    Precision Drift Chambers for the Atlas Muon Spectrometer

    Full text link
    ATLAS is a detector under construction to explore the physics at the Large Hadron Collider at CERN. It has a muon spectrometer with an excellent momentum resolution of 3-10%, provided by three layers of precision monitored-drift-tube chambers in a toroidal magnetic field. A single drift tube measures a track point with a mean resolution close to 100 micron, even at the expected high neutron and gamma background rates. The tubes are positioned within the chamber with an accuracy of 20 microns, achieved by elaborate construction and assembly monitoring procedures.Comment: 3 pages, 2 eps figures, Proceedings for poster at Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003. FRAP1

    Libel—No Publication by Dictation to Corporate Stenographer

    Get PDF
    Mims v. Metropolitan Life Ins. Co., 200 F. 2d 800 (5th Cir. 1952)

    Editorial: Controversies and solutions in environmental sciences: Addressing toxicity of sediments and soils

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2007 Ecomed Publishers

    Libel—No Publication by Dictation to Corporate Stenographer

    Get PDF
    Mims v. Metropolitan Life Ins. Co., 200 F. 2d 800 (5th Cir. 1952)

    Large-Scale Production of Monitored Drift Tube Chambers for the ATLAS Muon Spectrometer

    Full text link
    Precision drift tube chambers with a sense wire positioning accuracy of better than 20 microns are under construction for the ATLAS muon spectrometer. 70% of the 88 large chambers for the outermost layer of the central part of the spectrometer have been assembled. Measurements during chamber construction of the positions of the sense wires and of the sensors for the optical alignment monitoring system demonstrate that the requirements for the mechanical precision of the chambers are fulfilled

    Multi-layer atom chips for versatile atom micro manipulation

    Full text link
    We employ a combination of optical UV- and electron-beam-lithography to create an atom chip combining sub-micron wire structures with larger conventional wires on a single substrate. The new multi-layer fabrication enables crossed wire configurations, greatly enhancing the flexibility in designing potentials for ultra cold quantum gases and Bose-Einstein condensates. Large current densities of >6 x 10^7 A/cm^2 and high voltages of up to 65 V across 0.3 micron gaps are supported by even the smallest wire structures. We experimentally demonstrate the flexibility of the next generation atom chip by producing Bose-Einstein condensates in magnetic traps created by a combination of wires involving all different fabrication methods and structure sizes.Comment: 4 pages, 5 figure

    Magnetic Response of Magnetospirillum Gryphiswaldense

    Get PDF
    In this study we modelled and measured the U-turn trajectories of individual magnetotactic bacteria under the application of rotating magnetic fields, ranging in ampitude from 1 to 12 mT. The model is based on the balance between rotational drag and magnetic torque. For accurate verification of this model, bacteria were observed inside 5 m tall microfluidic channels, so that they remained in focus during the entire trajectory. From the analysis of hundreds of trajectories and accurate measurements of bacteria and magnetosome chain dimensions, we confirmed that the model is correct within measurement error. The resulting average rate of rotation of Magnetospirillum Gryphiswaldense is 0.74 +- 0.03 rad/mTs.Comment: 17 pages, 12 figure

    Performance of the ATLAS Precision Muon Chambers under LHC Operating Conditions

    Full text link
    For the muon spectrometer of the ATLAS detector at the large hadron collider (LHC), large drift chambers consisting of 6 to 8 layers of pressurized drift tubes are used for precision tracking covering an active area of 5000 m2 in the toroidal field of superconducting air core magnets. The chambers have to provide a spatial resolution of 41 microns with Ar:CO2 (93:7) gas mixture at an absolute pressure of 3 bar and gas gain of 2?104. The environment in which the chambers will be operated is characterized by high neutron and background with counting rates of up to 100 per square cm and second. The resolution and efficiency of a chamber from the serial production for ATLAS has been investigated in a 100 GeV muon beam at photon irradiation rates as expected during LHC operation. A silicon strip detector telescope was used as external reference in the beam. The spatial resolution of a chamber is degraded by 4 ?m at the highest background rate. The detection efficiency of the drift tubes is unchanged under irradiation. A tracking efficiency of 98% at the highest rates has been demonstrated

    Resolution and Efficiency of the ATLAS Muon Drift-Tube Chambers at High Background Rates

    Full text link
    The resolution and efficiency of a precision drift-tube chamber for the ATLAS muon spectrometer with final read-out electronics was tested at the Gamma Irradiation Facility at CERN in a 100 GeV muon beam and at photon irradiation rates of up to 990 Hz/square cm which corresponds to twice the highest background rate expected in ATLAS. A silicon strip detector telescope was used as external reference in the beam. The pulse-height measurement of the read-out electronics was used to perform time-slewing corrections which lead to an improvement of the average drift-tube resolution from 104 microns to 82 microns without irradiation and from 128 microns to 108 microns at the maximum expected rate. The measured drift-tube efficiency agrees with the expectation from the dead time of the read-out electronics up to the maximum expected rate

    Two-point density correlations of quasicondensates in free expansion

    Full text link
    We measure the two-point density correlation function of freely expanding quasicondensates in the weakly interacting quasi-one-dimensional (1D) regime. While initially suppressed in the trap, density fluctuations emerge gradually during expansion as a result of initial phase fluctuations present in the trapped quasicondensate. Asymptotically, they are governed by the thermal coherence length of the system. Our measurements take place in an intermediate regime where density correlations are related to near-field diffraction effects and anomalous correlations play an important role. Comparison with a recent theoretical approach described by Imambekov et al. yields good agreement with our experimental results and shows that density correlations can be used for thermometry of quasicondensates.Comment: 4 pages, 4 figures, minor change
    • …
    corecore