363 research outputs found
Reflecting on the Design and Implementation Issues of Virtual Environments
We present a candid reflection on the issues surrounding virtual environment design and implementation (VEDI) in order to: (1) motivate the topic as a research-worthy undertaking, and (2) attempt a comprehensive listing of impeding VEDI issues so they can be addressed. In order to structure this reflection, an idealized model of VEDI is presented. This model, investigated using mixed methods, resulted in 67 distinct issues along the model\u27s transitions and pathways. These were clustered into 11 themes and used to support five VEDI research challenges
Roughness of a subglacial conduit under Hansbreen, Svalbard
K.M., J.G., X.L. and Y.C. were supported by the National Science Foundation (NSF) under Grant No. #1503928. Thefieldwork team (K.M., J.G., M.C.) were supported by the Norwegian Arctic Research Council and Svalbard Science Forum, RiS #6106. K.M. was also supported by the National Aeronautics and Space Administration (NASA)Headquarters under the NASA Earth and Space Science Fellowship Program – Grant NNX10AN83H, the University of California, Santa Cruz, and the Woods Hole Oceanographic Institution Ocean and Climate Change Institute post-graduate fellowship. Portions of this work were conducted while J.G. was supported by the NSF EAR Postdoctoral Fellowship (#0946767). S.T. was funded by NASA grant NNX11AH61G.Hydraulic roughness exerts an important but poorly understood control on water pressure in subglacial conduits. Where relative roughness values are 5%. Here we report the first quantitative assessment of roughness heights and hydraulic diameters in a subglacial conduit. We measured roughness heights in a 125 m long section of a subglacial conduit using structure-from-motion to produce a digital surface model, and hand-measurements of the b-axis of rocks. We found roughness heights from 0.07 to 0.22 m and cross-sectional areas of 1-2 m2, resulting in relative roughness of 3-12% and >5% for most locations. A simple geometric model of varying conduit diameter shows that when the conduit is small relative roughness is >30% and has large variability. Our results suggest that parameterizations of conduit hydraulic roughness in subglacial hydrological models will remain challenging until hydraulic diameters exceed roughness heights by a factor of 20, or the conduit radius is >1 m for the roughness elements observed here.Publisher PDFPeer reviewe
Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing
This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy
In support of descriptive studies; relevance to translational research
The contemporary scientific establishment equates hypothesis testing to good science. This stance bypasses the preliminary need to identify a worthwhile hypothesis through rigorous observation of natural processes. If alleviation of human suffering is claimed as the goal of a scientific undertaking, it would be unfair to test a hypothesis whose relevance to human disease has not been satisfactorily proven. Here, we argue that descriptive investigations based on direct human observation should be highly valued and regarded essential for the selection of worthwhile hypotheses while the pursuit of costly scientific investigations without such evidence is a desecration of the cause upon which biomedical research is grounded
A first constraint on basal melt-water production of the Greenland ice sheet
PROMICE is funded by the Geological Survey of Denmark and Greenland (GEUS) and the Danish Ministry of Climate, Energy and Utilities under the Danish Cooperation for Environment in the Arctic (DANCEA), and is conducted in collaboration with DTU Space (Technical University of Denmark) and Asiaq, Greenland.The Greenland ice sheet has been one of the largest sources of sea-level rise since the early 2000s. However, basal melt has not been included explicitly in assessments of ice-sheet mass loss so far. Here, we present the first estimate of the total and regional basal melt produced by the ice sheet and the recent change in basal melt through time. We find that the ice sheet’s present basal melt production is 21.4 +4.4/−4.0 Gt per year, and that melt generated by basal friction is responsible for about half of this volume. We estimate that basal melting has increased by 2.9 ± 5.2 Gt during the first decade of the 2000s. As the Arctic warms, we anticipate that basal melt will continue to increase due to faster ice flow and more surface melting thus compounding current mass loss trends, enhancing solid ice discharge, and modifying fjord circulation.Publisher PDFPeer reviewe
Translational Medicine is developing in China: A new venue for collaboration
Translational Medicine is an emerging area comprising multidisciplinary Research from basic sciences to medical applications well summarized by the Bench-to-Beside concept; this entails close collaboration between clinicians and basic scientists across institutes. We further clarified that Translational Medicine should be regarded as a two-way road: Bench-to-Bedside and Bedside-to-Bench, to complement testing of novel therapeutic strategies in humans with feedback understanding of how they respond to them. It is, therefore, critical and important to define and promote Translational Medicine among clinicians, basic Researchers, biotechnologists, politicians, ethicists, sociologists, investors and coordinate these efforts among different Countries, fostering aspects germane only to this type of Research such as, as recently discussed, biotechnology entrepreneurship. Translational Medicine as an inter-disciplinary science is developing rapidly and widely and, in this article, we will place a special emphasis on China
Doppler ultrasound scoring to predict chemotherapeutic response in advanced breast cancer
<p>Abstract</p> <p>Background</p> <p>Doppler ultrasonography (US) is increasingly being utilized as an imaging modality in breast cancer. It is used to study the vascular characteristics of the tumor. Neoadjuvant chemotherapy is the standard modality of treatment in locally advanced breast cancer. Histological examination remains the gold standard to assess the chemotherapy response. However, based on the color Doppler findings, a new scoring system that could predict histological response following chemotherapy is proposed.</p> <p>Methods</p> <p>Fifty cases of locally advanced infiltrating duct carcinoma of the breast were studied. The mean age of the patients was 44.5 years. All patients underwent clinical, Doppler and histopathological assessment followed by three cycles of CAF (Cyclophosphamide, Adriamycin and 5-Fluorouracil) chemotherapy, repeat clinical and Doppler examination and surgery. The resected specimens were examined histopathologically and histological response was correlated with Doppler findings. The Doppler characteristics of the tumor were graded as 1–4 for <25%, 25–50%, >50% and complete disappearance of flow signals respectively. A cumulative score was calculated and compared with histopathological response. Results were analyzed using Chi square test, sensitivity, specificity, positive and negative predictive values.</p> <p>Results</p> <p>The maximum Doppler score according to the proposed scoring system was twelve and minimum three. Higher scores corresponded with a more favorable histopathological response. Twenty four patients had complete response to chemotherapy. Sixteen of these 24 patients (66.7%) had a cumulative Doppler score more than nine. The sensitivity of cumulative score >5 was 91.7% and specificity was 38.5%. The area under the ROC curve of the cumulative score >9 was 0.72.</p> <p>Conclusion</p> <p>Doppler scoring can be accurately used to objectively predict the response to chemotherapy in patients with locally advanced breast cancer and it correlates well with histopathological response.</p
What is a Humanized Mouse? Remaking the Species and Spaces of Translational Medicine
Copyright © 2012 SAGE Publications. Author's draft version; post-print. Final version published by Sage available on Sage Journals Online http://online.sagepub.com/This article explores the development of a novel biomedical research organism, and its potential to remake the species and spaces of translational medicine. The humanized mouse is a complex experimental object in which mice, rendered immunodeficient through genetic alteration, are engrafted with human stem cells in the hope of reconstituting a human immune system for biomedical research and drug testing. These chimeric organisms have yet to garner the same commentary from social scientists as other human–animal hybrid forms. Yet, they are rapidly being positioned as central to translational medicine in immunological research and pharmaceutical development. This article explores the complex relations between species and spaces they seek to enact. Humanizing mice simultaneously moves these animal forms towards the intimate geographies of corporeal equivalence with humans and the expansive geographies of translational research. These multiple trajectories are achieved by the way humanized mice function as both uncertain ‘epistemic things’ and as expansive ‘collaborative things’, articulating mouse genetics with other research, notably stem cell science. In the context of post-genomics, their indeterminacy is critical to their collaborative value; their expansive potential follows as much from their biological openness as from specific expectations. Yet, these new research organisms have both accumulative and disruptive capacities, for there are patterns of interference between these trajectories, remaking boundaries between experimental practices and clinical contexts
Laser vision : lidar as a transformative tool to advance critical zone science
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hydrology and Earth System Sciences 19 (2015): 2881-2897, doi:10.5194/hess-19-2881-2015.Observation and quantification of the Earth's surface is undergoing a revolutionary change due to the increased spatial resolution and extent afforded by light detection and ranging (lidar) technology. As a consequence, lidar-derived information has led to fundamental discoveries within the individual disciplines of geomorphology, hydrology, and ecology. These disciplines form the cornerstones of critical zone (CZ) science, where researchers study how interactions among the geosphere, hydrosphere, and biosphere shape and maintain the "zone of life", which extends from the top of unweathered bedrock to the top of the vegetation canopy. Fundamental to CZ science is the development of transdisciplinary theories and tools that transcend disciplines and inform other's work, capture new levels of complexity, and create new intellectual outcomes and spaces. Researchers are just beginning to use lidar data sets to answer synergistic, transdisciplinary questions in CZ science, such as how CZ processes co-evolve over long timescales and interact over shorter timescales to create thresholds, shifts in states and fluxes of water, energy, and carbon. The objective of this review is to elucidate the transformative potential of lidar for CZ science to simultaneously allow for quantification of topographic, vegetative, and hydrological processes. A review of 147 peer-reviewed lidar studies highlights a lack of lidar applications for CZ studies as 38 % of the studies were focused in geomorphology, 18 % in hydrology, 32 % in ecology, and the remaining 12 % had an interdisciplinary focus. A handful of exemplar transdisciplinary studies demonstrate lidar data sets that are well-integrated with other observations can lead to fundamental advances in CZ science, such as identification of feedbacks between hydrological and ecological processes over hillslope scales and the synergistic co-evolution of landscape-scale CZ structure due to interactions amongst carbon, energy, and water cycles. We propose that using lidar to its full potential will require numerous advances, including new and more powerful open-source processing tools, exploiting new lidar acquisition technologies, and improved integration with physically based models and complementary in situ and remote-sensing observations. We provide a 5-year vision that advocates for the expanded use of lidar data sets and highlights subsequent potential to advance the state of CZ science.The workshop forming the impetus for this
paper was funded by the National Science Foundation (EAR
1406031). Additional funding for the workshop and planning
was provided to S. W. Lyon by the Swedish Foundation for
International Cooperation in Research and Higher Education
(STINT grant no. 2013-5261). A. A. Harpold was supported by an
NSF fellowship (EAR 1144894)
- …