42 research outputs found

    Mutations of PIK3CA in gastric adenocarcinoma

    Get PDF
    BACKGROUND: Activation of the phosphatidylinositol 3-kinase (PI3K) through mutational inactivation of PTEN tumour suppressor gene is common in diverse cancer types, but rarely reported in gastric cancer. Recently, mutations in PIK3CA, which encodes the p110α catalytic subunit of PI3K, have been identified in various human cancers, including 3 of 12 gastric cancers. Eighty percent of these reported mutations clustered within 2 regions involving the helical and kinase domains. In vitro study on one of the "hot-spot" mutants has demonstrated it as an activating mutation. METHODS: Based on these data, we initiated PIK3CA mutation screening in 94 human gastric cancers by direct sequencing of the gene regions in which 80% of all the known PIK3CA mutations were found. We also examined PIK3CA expression level by extracting data from the previous large-scale gene expression profiling study. Using Significance Analysis of Microarrays (SAM), we further searched for genes that show correlating expression with PIK3CA. RESULTS: We have identified PIK3CA mutations in 4 cases (4.3%), all involving the previously reported hotspots. Among these 4 cases, 3 tumours demonstrated microsatellite instability and 2 tumours harboured concurrent KRAS mutation. Data extracted from microarray studies showed an increased expression of PIK3CA in gastric cancers when compared with the non-neoplastic gastric mucosae (p < 0.001). SAM further identified 2910 genes whose expression levels were positively associated with that of PIK3CA. CONCLUSION: Our data suggested that activation of the PI3K signalling pathway in gastric cancer may be achieved through up-regulation or mutation of PIK3CA, in which the latter may be a consequence of mismatch repair deficiency

    Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases

    Get PDF
    Colorectal carcinomas (CRCs) with high microsatellite instability (MSI-H) share clinicopathological features distinctly different from their microsatellite stable (MSS) counterparts. Unlike MSS cancers, MSI-H CRCs occur predominantly in the right-sided colon and are often characterised by a strong lymphocyte infiltration. A poor differentiation pattern is found in most MSI-H CRCs, even though patients with MSI-H carcinomas seem to have a significantly longer survival after surgical resection. To clarify which factors contribute to the obvious paradoxon of a more favourable prognosis of MSI tumours, several clinical and histopathological features as well as the microsatellite status were evaluated in 120 colorectal cancer cases fulfilling clinical criteria (Bethesda) indicative for familial colorectal cancer. Microsatellite instablity status and lymphocyte infiltration were related to tumour stage and patients' follow-up. Statistical analysis confirmed well-known relations, such as enhanced lymphocyte infiltration accompanied by Crohn's like reaction (CLR) in MSI-H cancers (CLR+ in 27 out of 47 MSI-H vs 14 out of 71 MSS CRCs, P<0.001). However, after stratification for depth of local invasion and penetration of the primary tumour, T3 tumours displaying MSI had a significantly lower rate of distant metastases (M1 in four out of 35 MSI-H vs 20 out of 41 MSS CRCs, P<0.001). A similar tendency was observed for CLR-positive CRCs (M1 in six out of 29 CLR+ vs 17 out of 45 CLR− CRCs, P=0.13). In a logistic regression model, the MSI-H phenotype and the presence of CLR were independent predictors of a low UICC stage (P=0.006 and 0.04, respectively). These data, together with the recent definition of highly immunogenic neo-antigens expressed in MSI-H tumour cells, suggest that MSI-H CRCs elicit a protective host response that may prevent metastasis formation

    Transcriptionally driven cruciform formation in vivo.

    No full text
    We studied the formation of d(A-T)n cruciforms in E.coli cells by probing intracellular plasmid DNA with chloroacetaldehyde followed by fine analysis of modified DNA bases. d(A-T)16 sequences were inserted into specifically designed plasmids either upstream of a single trc promoter, or between two divergent trc promoters. We found that in both cases, induction of transcription by IPTG leads to the transition of the d(A-T)16 stretch into a cruciform state. In the case of two divergent promoters, we observed cruciform formation even without IPTG. Enhanced cruciform formation correlates with the elevation in promoter activity as defined by the opening of the promoter at the -10 to +2 positions. We conclude that transcriptionally driven negative supercoiling provokes cruciform formation in vivo
    corecore