213 research outputs found

    Strongly spin-orbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors

    Full text link
    We investigate the two-dimensional (2D) highly spin-polarized electron accumulation layers commonly appearing near the surface of n-type polar semiconductors BiTeX (X = I, Br, and Cl) by angular-resolved photoemission spectroscopy. Due to the polarity and the strong spin-orbit interaction built in the bulk atomic configurations, the quantized conduction-band subbands show giant Rashba-type spin-splitting. The characteristic 2D confinement effect is clearly observed also in the valence-bands down to the binding energy of 4 eV. The X-dependent Rashba spin-orbit coupling is directly estimated from the observed spin-split subbands, which roughly scales with the inverse of the band-gap size in BiTeX.Comment: 15 pages 4 figure

    Slater to Mott crossover in the metal to insulator transition of Nd2Ir2O7

    Full text link
    We present an angle-resolved photoemission study of the electronic structure of the three-dimensional pyrochlore iridate Nd2Ir2O7 through its magnetic metal-insulator transition. Our data reveal that metallic Nd2Ir2O7 has a quadratic band, touching the Fermi level at the Gamma point, similarly to that of Pr2Ir2O7. The Fermi node state is, therefore, a common feature of the metallic phase of the pyrochlore iridates. Upon cooling below the transition temperature, this compound exhibits a gap opening with an energy shift of quasiparticle peaks like a band gap insulator. The quasiparticle peaks are strongly suppressed, however, with further decrease of temperature, and eventually vanish at the lowest temperature, leaving a non-dispersive flat band lacking long-lived electrons. We thereby identify a remarkable crossover from Slater to Mott insulators with decreasing temperature. These observations explain the puzzling absence of Weyl points in this material, despite its proximity to the zero temperature metal-insulator transition

    Electronic structure of BaNi2_2P2_2 observed by angle-resolved photoemission spectroscopy

    Full text link
    We have performed an angle-resolved photoemission spectroscopy (ARPES) study of BaNi2_2P2_2 which shows a superconducting transition at TcT_c \sim 2.5 K. We observed hole and electron Fermi surfaces (FSs) around the Brillouin zone center and corner, respectively, and the shapes of the hole FSs dramatically changed with photon energy, indicating strong three-dimensionality. The observed FSs are consistent with band-structure calculation and de Haas-van Alphen measurements. The mass enhancement factors estimated in the normal state were mm^*/mbm_b \leq 2, indicating weak electron correlation compared to typical iron-pnictide superconductors. An electron-like Fermi surface around the Z point was observed in contrast with BaNi2_2As2_2 and may be related to the higher TcT_c of BaNi2_2P2_2.Comment: 6 figure
    corecore