3,592 research outputs found

    Reentrant spin glass state in Mn doped Ni2MnSn shape memory alloy

    Full text link
    The ground state properties of the ferromagnetic shape memory alloy of nominal composition Ni2Mn1.36Sn0.64 have been studied by dc magnetization and ac susceptibility measurements. Like few other Ni-Mn based alloys, this sample exhibits exchange bias phenomenon. The observed exchange bias pinning was found to originate right from the temperature where a step-like anomaly is present in the zero-field-cooled magnetization data. The ac susceptibility study indicates the onset of spin glass freezing near this step-like anomaly with clear frequency shift. The sample can be identified as a reentrant spin glass with both ferromagnetic and glassy phases coexisting together at low temperature at least in the field-cooled state. The result provides us an comprehensive view to identify the magnetic character of various Ni-Mn-based shape memory alloys with competing magnetic interactions.Comment: 5 figure

    Self-organisation to criticality in a system without conservation law

    Full text link
    We numerically investigate the approach to the stationary state in the nonconservative Olami-Feder-Christensen (OFC) model for earthquakes. Starting from initially random configurations, we monitor the average earthquake size in different portions of the system as a function of time (the time is defined as the input energy per site in the system). We find that the process of self-organisation develops from the boundaries of the system and it is controlled by a dynamical critical exponent z~1.3 that appears to be universal over a range of dissipation levels of the local dynamics. We show moreover that the transient time of the system ttrt_{tr} scales with system size L as ttr∼Lzt_{tr} \sim L^z. We argue that the (non-trivial) scaling of the transient time in the OFC model is associated to the establishment of long-range spatial correlations in the steady state.Comment: 10 pages, 6 figures; accepted for publication in Journal of Physics

    Perturbation Theory for Fractional Brownian Motion in Presence of Absorbing Boundaries

    Full text link
    Fractional Brownian motion is a Gaussian process x(t) with zero mean and two-time correlations ~ t^{2H} + s^{2H} - |t-s|^{2H}, where H, with 0<H<1 is called the Hurst exponent. For H = 1/2, x(t) is a Brownian motion, while for H unequal 1/2, x(t) is a non-Markovian process. Here we study x(t) in presence of an absorbing boundary at the origin and focus on the probability density P(x,t) for the process to arrive at x at time t, starting near the origin at time 0, given that it has never crossed the origin. It has a scaling form P(x,t) ~ R(x/t^H)/t^H. Our objective is to compute the scaling function R(y), which up to now was only known for the Markov case H=1/2. We develop a systematic perturbation theory around this limit, setting H = 1/2 + epsilon, to calculate the scaling function R(y) to first order in epsilon. We find that R(y) behaves as R(y) ~ y^phi as y -> 0 (near the absorbing boundary), while R(y) ~ y^gamma exp(-y^2/2) as y -> oo, with phi = 1 - 4 epsilon + O(epsilon^2) and gamma = 1 - 2 epsilon + O(epsilon^2). Our epsilon-expansion result confirms the scaling relation phi = (1-H)/H proposed in Ref. [28]. We verify our findings via numerical simulations for H = 2/3. The tools developed here are versatile, powerful, and adaptable to different situations.Comment: 16 pages, 8 figures; revised version 2 adds discussion on spatial small-distance cutof

    Exact Occupation Time Distribution in a Non-Markovian Sequence and Its Relation to Spin Glass Models

    Full text link
    We compute exactly the distribution of the occupation time in a discrete {\em non-Markovian} toy sequence which appears in various physical contexts such as the diffusion processes and Ising spin glass chains. The non-Markovian property makes the results nontrivial even for this toy sequence. The distribution is shown to have non-Gaussian tails characterized by a nontrivial large deviation function which is computed explicitly. An exact mapping of this sequence to an Ising spin glass chain via a gauge transformation raises an interesting new question for a generic finite sized spin glass model: at a given temperature, what is the distribution (over disorder) of the thermally averaged number of spins that are aligned to their local fields? We show that this distribution remains nontrivial even at infinite temperature and can be computed explicitly in few cases such as in the Sherrington-Kirkpatrick model with Gaussian disorder.Comment: 10 pages Revtex (two-column), 1 eps figure (included

    Metastability and magnetic memory effect in Ni-Mn-Sn alloy

    Full text link
    Magneto-structural instability in the ferromagnetic shape memory alloy of composition Ni2_2Mn1.4_{1.4}Sn0.6_{0.6} is investigated by transport and magnetic measurements. Large negative magnetoresistance is observed around the martensitic transition temperature (90-210 K). Both magnetization and magnetoresistance data indicate that upon the application of an external magnetic field at a constant temperature, the sample attains a field-induced arrested state which persists even when the field is withdrawn. We observe an intriguing behavior of the arrested state that it can remember the last highest field it has experienced. The field-induced structural transition plays the key role for the observed anomaly and the observed irreversibility can be accounted by the Landau-type free energy model for the first order phase transition

    Critical dimensions of the diffusion equation

    Full text link
    We study the evolution of a random initial field under pure diffusion in various space dimensions. From numerical calculations we find that the persistence properties of the system show sharp transitions at critical dimensions d1 ~ 26 and d2 ~ 46. We also give refined measurements of the persistence exponents for low dimensions.Comment: 4 pages, 5 figure

    Exchange bias with Fe substitution in LaMnO_3

    Full text link
    The exchange bias (EB) in LaMn_{0.7}Fe_{0.3}O_3 is observed by the negative shift and training effect of the hysteresis loops, while the sample was cooled in external magnetic field. The analysis of cooling field dependence of EB gives the size of the ferromagnetic (FM) cluster ~ 25 Angstrom, where the magnetic anisotropy of FM cluster is found two order of magnitude higher than the FM bulk manganites. We propose that the nanoscale FM clusters are embedded in the glassy magnetic host with EB at the FM/glassy magnetic interface.Comment: 6 figure

    Exchange bias effect in the phase separated Nd_{1-x}Sr_{x}CoO_3 at the spontaneous ferromagnetic/ferrimagnetic interface

    Full text link
    We report the new results of exchange bias effect in Nd_{1-x}Sr_{x}CoO_3 for x = 0.20 and 0.40, where the exchange bias phenomenon is involved with the ferrimagnetic (FI) state in a spontaneously phase separated system. The zero-field cooled magnetization exhibits the FI (T_{FI}) and ferromagnetic (T_C) transitions at ~ 23 and \sim 70 K, respectively for x = 0.20. The negative horizontal and positive vertical shifts of the magnetic hysteresis loops are observed when the system is cooled through T_{FI} in presence of a positive static magnetic field. Training effect is observed for x = 0.20, which could be interpreted by a spin configurational relaxation model. The unidirectional shifts of the hysteresis loops as a function of temperature exhibit the absence of exchange bias above T_{FI} for x = 0.20. The analysis of the cooling field dependence of exchange bias field and magnetization indicates that the ferromagnetic (FM) clusters consist of single magnetic domain with average size around \sim 20 and ~ 40 \AA ~ for x = 0.20 and 0.40, respectively. The sizes of the FM clusters are close to the percolation threshold for x = 0.20, which grow and coalesce to form the bigger size for x = 0.40 resulting in a weak exchange bias effect.Comment: 9 pages, 9 figure
    • …
    corecore