6,141 research outputs found
Convolutional Deblurring for Natural Imaging
In this paper, we propose a novel design of image deblurring in the form of
one-shot convolution filtering that can directly convolve with naturally
blurred images for restoration. The problem of optical blurring is a common
disadvantage to many imaging applications that suffer from optical
imperfections. Despite numerous deconvolution methods that blindly estimate
blurring in either inclusive or exclusive forms, they are practically
challenging due to high computational cost and low image reconstruction
quality. Both conditions of high accuracy and high speed are prerequisites for
high-throughput imaging platforms in digital archiving. In such platforms,
deblurring is required after image acquisition before being stored, previewed,
or processed for high-level interpretation. Therefore, on-the-fly correction of
such images is important to avoid possible time delays, mitigate computational
expenses, and increase image perception quality. We bridge this gap by
synthesizing a deconvolution kernel as a linear combination of Finite Impulse
Response (FIR) even-derivative filters that can be directly convolved with
blurry input images to boost the frequency fall-off of the Point Spread
Function (PSF) associated with the optical blur. We employ a Gaussian low-pass
filter to decouple the image denoising problem for image edge deblurring.
Furthermore, we propose a blind approach to estimate the PSF statistics for two
Gaussian and Laplacian models that are common in many imaging pipelines.
Thorough experiments are designed to test and validate the efficiency of the
proposed method using 2054 naturally blurred images across six imaging
applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin
Dynamic Control of Tunable Sub-optimal Algorithms for Scheduling of Time-varying Wireless Networks
It is well known that for ergodic channel processes the Generalized
Max-Weight Matching (GMWM) scheduling policy stabilizes the network for any
supportable arrival rate vector within the network capacity region. This
policy, however, often requires the solution of an NP-hard optimization
problem. This has motivated many researchers to develop sub-optimal algorithms
that approximate the GMWM policy in selecting schedule vectors. One implicit
assumption commonly shared in this context is that during the algorithm
runtime, the channel states remain effectively unchanged. This assumption may
not hold as the time needed to select near-optimal schedule vectors usually
increases quickly with the network size. In this paper, we incorporate channel
variations and the time-efficiency of sub-optimal algorithms into the scheduler
design, to dynamically tune the algorithm runtime considering the tradeoff
between algorithm efficiency and its robustness to changing channel states.
Specifically, we propose a Dynamic Control Policy (DCP) that operates on top of
a given sub-optimal algorithm, and dynamically but in a large time-scale
adjusts the time given to the algorithm according to queue backlog and channel
correlations. This policy does not require knowledge of the structure of the
given sub-optimal algorithm, and with low overhead can be implemented in a
distributed manner. Using a novel Lyapunov analysis, we characterize the
throughput stability region induced by DCP and show that our characterization
can be tight. We also show that the throughput stability region of DCP is at
least as large as that of any other static policy. Finally, we provide two case
studies to gain further intuition into the performance of DCP.Comment: Submitted for journal consideration. A shorter version was presented
in IEEE IWQoS 200
- …
