19 research outputs found

    Are Kaluza-Klein modes enhanced by parametric resonance?

    Get PDF
    We study parametric amplification of Kaluza-Klein (KK) modes in a higher DD-dimensional generalized Kaluza-Klein theory, which was originally considered by Mukohyama in the narrow resonance case. It was suggested that KK modes can be enhanced by an oscillation of a scale of compactification by the dd-dimensional sphere Sd (d=D4)S^d~(d=D-4) and by the direct product Sd1×Sd2 (d1+d2=D4)S^{d_1}\times S^{d_2}~(d_1+d_2=D-4). We extend this past work to the more general case where initial values of the scale of compactification and the quantum number of the angular momentum ll of KK modes are not small. We perform analytic approaches based on the Mathieu equation as well as numerical calculations, and find that the expansion of the universe rapidly makes the KK field deviate from instability bands. As a result, KK modes are not enhanced sufficiently in an expanding universe in these two classes of models.Comment: 15 pages, 5 figure

    Particle production in the oscillating inflation model

    Get PDF
    We investigate the particle production of a scalar field χ\chi coupled to an inflaton field ϕ\phi (g2ϕ2χ2/2g^2\phi^2\chi^2/2) in the {\it oscillating inflation} model, which was recently proposed by Damour and Mukhanov. Although the fluctuation of the ϕ\phi field can be effectively enhanced during a stage of the oscillating inflation, the maximum fluctuation is suppressed as the critical value ϕc\phi_c which indicates the scale of the core part of the inflaton potential decreases, in taking into account the back reaction effect of created particles. As for the χ\chi particle production, we find that larger values of the coupling constant gg are required to lead to an efficient parametric resonance with the decrease of ϕc\phi_c, because an effective mass of inflaton around the minimum of its potential becomes larger. However, it is possible to generate the superheavy χ\chi particle whose mass is greater than 101410^{14} GeV, which would result in an important consequence for the GUT baryogenesis.Comment: 18 pages, 14 figure

    Resonant particle production with non-minimally coupled scalar fields in preheating after inflation

    Full text link
    We investigate a resonant particle production of a scalar field χ\chi coupled non-minimally to a spacetime curvature RR (ξRχ2\xi R \chi^2) as well as to an inflaton field ϕ\phi (g2ϕ2χ2g^2\phi^2\chi^2). In the case of g<3×104g < 3 \times 10^{-4}, ξ\xi effect assists gg-resonance in certain parameter regimes. However, for g>3×104g > 3 \times 10^{-4}, gg-resonance is not enhanced by ξ\xi effect because of ξ\xi suppression effect as well as a back reaction effect. If ξ4\xi \approx -4, the maximal fluctuation of produced χ\chi-particle is max2×1017\sqrt{}_{max} \approx 2 \times 10^{17} GeV for g<1×105g < 1 \times 10^{-5}, which is larger than the minimally coupled case with g1×103g \approx 1 \times 10^{-3}.Comment: 33pages, 12figures. to appear in Physical Review

    Inflation Dynamics and Reheating

    Get PDF
    We review the theory of inflation with single and multiple fields paying particular attention to the dynamics of adiabatic and entropy/isocurvature perturbations which provide the primary means of testing inflationary models. We review the theory and phenomenology of reheating and preheating after inflation providing a unified discussion of both the gravitational and nongravitational features of multi-field inflation. In addition we cover inflation in theories with extra dimensions and models such as the curvaton scenario and modulated reheating which provide alternative ways of generating large-scale density perturbations. Finally we discuss the interesting observational implications that can result from adiabatic-isocurvature correlations and non-Gaussianity.Comment: 51 pages, latex, 16 figures, version to appear in Reviews of Modern Physic
    corecore