811 research outputs found

    Spin Dynamics in the Magnetic Chains Arrays of Sr14Cu24O41: a Neutron Inelastic scattering Investigation

    Full text link
    Below about 150 K, the spin arrangement in the chain arrays of Sr14Cu24O41 is shown to develop in two dimensions (2D). Both the correlations and the dispersion of the observed elementary excitations agree well with a model of interacting dimers. Along the chains, the intra- and inter-dimer distances are equal to 2 and about 3 times the distance (c) between neighboring Cu ions. While the intra-dimer coupling is J about 10 meV, the inter-dimer couplings along and between the chains are of comparable strenght, J// about -1.1 meV and Jperp about 1.7 meV, respectively. This remarkable 2D arrangement satisfies the formal Cu valence of the undoped compound. Our data suggest also that it is associated with a relative sliding of one chain with respect to the next one, which, as T decreases, develops in the chain direction. A qualitative analysis shows that nearest inter-dimer spin correlations are ferromagnetic, which, in such a 2D structure, could well result from frustration effects.Comment: 4 pages, 5 figures, submitted to Phys.Rev.B, date of receipt 29 June 199

    Single-crystal growth and dependences on the hole concentration and magnetic field of the magnetic ground state in the edge-sharing CuO2_2 chain system Ca2+x_{2+x}Y2x_{2-x}Cu5_5O10_{10}

    Get PDF
    We have succeeded in growing large-size single-crystals of Ca2+x_{2+x}Y2x_{2-x}Cu5_5O10_{10} with 0x1.670 \le x \le 1.67 and measured the magnetic susceptibility, specific heat and magnetization curve, in order to study the magnetic ground state in the edge-sharing CuO2_2 chain as a function of hole concentration and magnetic field. In 0x1.30 \le x \le 1.3, it has been found that an antiferromagnetically ordered phase with the magnetic easy axis along the b-axis is stabilized and that a spin-flop transition occurs by the application of magnetic fields parallel to the b-axis. The antiferromagnetic transition temperature decreases with increasing xx and disappears around x=x = 1.4. Alternatively, a spin-glass phase appears around x=1.5x = 1.5. At x=1.67x = 1.67 where the hole concentration is \sim 1/3 per Cu, it appears that a spin-gap state is formed owing to the formation of spin-singlet pairs. No sign of the coexistence of an antiferromagnetically ordered state and a spin-gap one suggested in Ca1x_{1-x}CuO2_2 has been found in Ca2+x_{2+x}Y2x_{2-x}Cu5_5O10_{10}.Comment: 13 pages, 12 figures, 1 tabl

    Magnetic excitations and structural change in the S=1/2 quasi-one-dimensional magnet Sr_{14-x}Y_{x}Cu_{24}O_{41} (0<x<1)

    Full text link
    Neutron scattering measurements have been performed on the S=1/2 quasi-one-dimensional system Sr_{14-x}Y_{x}Cu_{24}O_{41}, which has both simple chains and two-leg ladders of copper ions. We observed that when a small amount of yttrium is substituted for strontium, which is expected to reduce the number of holes, the dimerized state and the structure in the chain are changed drastically. The inelastic peaks originating from the dimerized state of the chain becomes broader in energy but not in momentum space. This implies that the dimerized state becomes unstable but the spin correlations are unchanged with yttrium substitution. Furthermore, it was observed that nuclear Bragg peak intensities originating from the chain show strong temperature and x dependence, which suggests that the chains slide along the c axis as temperature and x are varied.Comment: 5 pages, 6 figures, to appear in Phys. Rev.

    Dynamic Spin Response for Heisenberg Ladders

    Full text link
    We employ the recently proposed plaquette basis to investigate static and dynamic properties of isotropic 2-leg Heisenberg spin ladders. Simple non-interacting multi-plaquette states provide a remarkably accurate picture of the energy/site and dynamic spin response of these systems. Insights afforded by this simple picture suggest a very efficient truncation scheme for more precise calculations. When the small truncation errors are accounted for using recently developed Contractor Renormalization techniques, very accurate results requiring a small fraction of the computational effort of exact calculations are obtained. These methods allow us to determine the energy/site, gap, and spin response of 2x16 ladders. The former two values are in good agreement with density matrix renormalization group results. The spin response calculations show that nearly all the strength is concentrated in the lowest triplet level and that coherent many-body effects enhance the response/site by nearly a factor of 1.6 over that found for 2x2 systems.Comment: 9 pages with two enclosed postscript figure

    Effects of interladder couplings in the trellis lattice

    Full text link
    Strongly correlated models on coupled ladders in the presence of frustration, in particular the trellis lattice, are studied by numerical techniques. For the undoped case, the possibility of incommensurate peaks in the magnetic structure factor at low temperatures is suggested. In the doped case, our main conclusion for the trellis lattice is that by increasing the interladder coupling, the balance between the magnetic energy in the ladders and the kinetic energy in the zig-zag chains is altered leading eventually to the destruction of the hole pairs initially formed and localized in the ladders.Comment: final version, to appear in Physical Review

    Dynamical Spin Response Functions for Heisenberg Ladders

    Full text link
    We present the results of a numerical study of the 2 by L spin 1/2 Heisenberg ladder. Ground state energies and the singlet-triplet energy gaps for L = (4-14) and equal rung and leg interaction strengths were obtained in a Lanczos calculation and checked against earlier calculations by Barnes et al. (even L up to 12). A related moments technique is then employed to evaluate the dynamical spin response for L=12 and a range of rung to leg interaction strength ratios (0 - 5). We comment on two issues, the need for reorthogonalization and the rate of convergence, that affect the numerical utility of the moments treatment of response functions.Comment: Revtex, 3 figure

    Quasi-two-dimensional hole ordering and dimerized state in the CuO2-chain layers in Sr14Cu24O41

    Full text link
    Neutron scattering experiments have been performed on Sr14_{14}Cu24_{24}O41_{41} which consists of both chains and ladders of copper ions. We observed that the magnetic excitations from the CuO2_2 chain have two branches and that both branches are weakly dispersive along the aa and cc axes. The ω\omega-QQ dispersion relation as well as the intensities can be reasonably described by a random phase approximation with intradimer coupling between next-nearest-neighbor copper spins JJ=11 meV, interdimer coupling along the c axis JcJ_c=0.75 meV, and interdimer coupling along the a axis JaJ_a=0.75 meV. The dimer configuration indicates a quasi-two-dimensional hole ordering, resulting in an ordering of magnetic Cu2+^{2+} with spin-1/2 and nonmagnetic Cu, which forms the Zhang-Rice singlet. We have also studied the effect of Ca substitution for Sr on the dimer and the hole ordering.Comment: 7 pages, Revtex, 10 figures, Submitted to Phys. Rev.

    Phases of two coupled Luttinger liquids

    Full text link
    A model of two interacting one--dimensional fermion systems (``Luttinger liquids'') coupled by single--particle hopping is investigated. Bosonization allows a number of exact statements to be made. In particular, for forward scattering only, the model contains two massless boson sectors and an Ising type critical sector. For general interactions, there is a spin excitation gap and either s-- or d--type pairing fluctuations dominate. It is shown that the same behavior is also found for strong interactions. A possible scenario for the crossover to a Fermi liquid in a many chain system is discussed.Comment: revised version, some changes, 11 pages, no figures, RexTeX3.

    Nuclear Spin Relaxation in Hole Doped Two-Leg Ladders

    Full text link
    The nuclear spin-lattice relaxation rate (1/T11/T_{1}) has been measured in the single crystals of hole doped two-leg ladder compounds Sr14x_{14-x}Cax_{x}Cu24_{24}O41_{41} and in the undoped parent material La6_6Ca8_8Cu24_{24}O41_{41}. Comparison of 1/T11/T_{1} at the Cu and the two distinct oxygen sites revealed that the major spectral weight of low frequency spin fluctuations is located near q(π,π)q \sim (\pi, \pi) for most of the temperature and doping ranges investigated. Remarkable difference in the temperature dependence of 1/T11/T_1 for the two oxygen sites in the heavily doped xx=12 sample revealed reduction of singlet correlations between two legs in place of growing antiferromagnetic correlations along the leg direction with increasing temperature. Such behavior is most likely caused by the dissociation of bound hole pairs.Comment: 4 pages. to appear in J. Phys. Soc. Jpn. Vol. 6

    Role of low-frequency vibrations on sound propagation in glasses at intermediate temperature

    Get PDF
    We report measurements of the temperature dependence of the sound attenuation and the fractional change in sound velocity for the glass (G) and orientational-glass (OG) phases of polymorphic ethanol. Strikingly similar behaviors are found for both phases despite the OG's underlying crystal (bcc) lattice. Such similarity, which is also revealed in dielectric spectroscopy and inelastic neutron scattering measurements, suggests whole molecule small-angle librations as a common microscopic origin for a wide variety of "glassy" phenomena.Dirección General de Investigación Científica y Técnica PB95-0075-C03-0
    corecore