9 research outputs found

    The Tetraspanins CD9 and CD81 Regulate CD9P1-Induced Effects on Cell Migration

    Get PDF
    CD9P-1 is a cell surface protein with immunoglobulin domains and an unknown function that specifically associates with tetraspanins CD9 and CD81. Overexpression of CD9P-1 in HEK-293 cells induces dramatic changes in cell spreading and migration on various matrices. Experiments using time-lapse videomicroscopy revealed that CD9P-1 expression has led to higher cell motility on collagen I but lower motility on fibronectin through a β1-integrins dependent mechanism. On collagen I, the increase in cell motility induced by CD9P-1 expression was found to involve integrin α2β1 and CD9P-1 was observed to associate with this collagen receptor. The generation of CD9P-1 mutants demonstrated that the transmembrane and the cytoplasmic domains are necessary for inducing effects on cell motility. On the other hand, expression of tetraspanins CD9 or CD81 was shown to reverse the effects of CD9P-1 on cell motility on collagen I or fibronectin with a concomitant association with CD9P-1. Thus, the ratio of expression levels between CD9P-1 and its tetraspanin partners can regulate cell motility

    Absence of spermatozoal CD46 protein expression and associated rapid acrosome reaction rate in striped field mice (Apodemus agrarius)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In rodents, the cell surface complement regulatory protein CD46 is expressed solely on the spermatozoal acrosome membrane. Ablation of the CD46 gene is associated with a faster acrosome reaction. Sperm from Apodemus flavicollis (yellow-necked field mice), A. microps (pygmy field mice) and A. sylvaticus (European wood mice) fail to express CD46 protein and exhibit a more rapid acrosome reaction rate than Mus (house mice) or BALB/c mice. A. agrarius (striped field mice) belong to a different Apodemus subgenus and have pronounced promiscuity and large relative testis size. The aim of this study was to determine whether A. agrarius sperm fail to express CD46 protein and, if so, whether A. agrarius have a faster acrosome reaction than Mus.</p> <p>Methods</p> <p>Reverse transcription polymerase chain reaction (RT-PCR) was used to assess whether A. agrarius transcribe testicular CD46 mRNA. RT-PCR was supplemented with 3'- and 5'-rapid amplification of cDNA ends to determine the complete nucleotide sequence of A. agrarius CD46. Fluorescence microscopy was used to assess whether CD46 protein is expressed by A. agrarius sperm. The acrosome status of A. agrarius sperm was calculated over time by immunocytochemistry using peanut agglutinin lectin.</p> <p>Results</p> <p>We demonstrate that A. agrarius mice transcribe two unique alternatively spliced testicular CD46 mRNA transcripts, both lacking exon 7, which differ from those described previously in other Apodemus species. The larger A. agrarius CD46 transcript has an insert between exons 10 and 11 which, if translated, would result in a novel cytoplasmic tail. In addition, A. agrarius CD46 transcripts have an extended AU-rich 3'-untranslated region (UTR) and a truncated 5'-UTR, resulting in failure to express spermatozoal CD46 protein. We show that A. agrarius has a significantly faster spontaneous acrosome reaction rate than A. sylvaticus and Mus.</p> <p>Conclusion</p> <p>Absence of CD46 protein expression is associated with acrosomal instability in rodents. A. agrarius mice express novel CD46 transcripts, resulting in the trade of spermatozoal CD46 protein expression for a rapid acrosome reaction rate, in common with other species of field mice. This provides a strategy to increase competitive sperm advantage for individuals, leading to faster fertilisation in this highly promiscuous genus.</p

    Organisation of the Tetraspanin Web

    No full text

    The Role of Tetraspanins in Cell Migration and Intercellular Adhesion

    No full text
    corecore