4,231 research outputs found

    Aharonov-Bohm Problem for Spin-One

    Full text link
    The basic AB problem is to determine how an unshielded tube of magnetic flux Φ\Phi affects arbitrarily long-wavelength charged particles impinging on it. For spin-1 at almost all Φ\Phi the particles do not penetrate the tube, so the interaction essentially is periodic in Φ\Phi (AB effect). Below-threshold bound states move freely only along the tube axis, and consequent induced vacuum currents supplement rather than screen Φ\Phi. For a pure magnetic interaction the tube must be broader than the particle Compton wavelength, i.e., only the nonrelativistic spin-1 AB problem exists.Comment: 15 pages, Late

    The WARPS Survey. VIII. Evolution of the Galaxy Cluster X-ray Luminosity Function

    Full text link
    We present measurements of the galaxy cluster X-ray Luminosity Function (XLF) from the Wide Angle ROSAT Pointed Survey (WARPS) and quantify its evolution. WARPS is a serendipitous survey of the central region of ROSAT pointed observations and was carried out in two phases (WARPS-I and WARPS-II). The results here are based on a final sample of 124 clusters, complete above a flux limit of 6.5 10E-15 erg/s/cm2, with members out to redshift z ~ 1.05, and a sky coverage of 70.9 deg2. We find significant evidence for negative evolution of the XLF, which complements the majority of X-ray cluster surveys. To quantify the suggested evolution, we perform a maximum likelihood analysis and conclude that the evolution is driven by a decreasing number density of high luminosity clusters with redshift, while the bulk of the cluster population remains nearly unchanged out to redshift z ~ 1.1, as expected in a low density Universe. The results are found to be insensitive to a variety of sources of systematic uncertainty that affect the measurement of the XLF and determination of the survey selection function. We perform a Bayesian analysis of the XLF to fully account for uncertainties in the local XLF on the measured evolution, and find that the detected evolution remains significant at the 95% level. We observe a significant excess of clusters in the WARPS at 0.1 < z < 0.3 and LX ~ 2 10E42 erg/s compared with the reference low-redshift XLF, or our Bayesian fit to the WARPS data. We find that the excess cannot be explained by sample variance, or Eddington bias, and is unlikely to be due to problems with the survey selection function.Comment: 13 pages, 12 figures, accepted for publication in MNRA

    Differential negative reinforcement of other behavior to increase compliance with wearing an anti-strip suit

    Full text link
    Using a changing-criterion design, we replicated and extended a study (Cook, Rapp, & Schulze, 2015) on differential negative reinforcement of other behavior (DNRO). More specifically, educational assistants implemented DNRO to teach a 12-year-old boy with autism spectrum disorder to comply with wearing an anti-strip suit to prevent inappropriate fecal behavior in a school setting. The duration for which the participant wore the suit systematically increased from 2 s at the start of treatment to the entire duration of the school day at the termination of the study. Moreover, these effects were generalized to a new school with novel staff and persisted for more than a year. These findings replicate prior research on DNRO and further support the use of the intervention to increase compliance with wearing protective items, or medical devices, in practical settings

    Winds of Planet Hosting Stars

    Get PDF
    The field of exoplanetary science is one of the most rapidly growing areas of astrophysical research. As more planets are discovered around other stars, new techniques have been developed that have allowed astronomers to begin to characterise them. Two of the most important factors in understanding the evolution of these planets, and potentially determining whether they are habitable, are the behaviour of the winds of the host star and the way in which they interact with the planet. The purpose of this project is to reconstruct the magnetic fields of planet hosting stars from spectropolarimetric observations, and to use these magnetic field maps to inform simulations of the stellar winds in those systems using the Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) code. The BATS-R-US code was originally written to investigate the behaviour of the Solar wind, and so has been altered to be used in the context of other stellar systems. These simulations will give information about the velocity, pressure and density of the wind outward from the host star. They will also allow us to determine what influence the winds will have on the space weather environment of the planet. This paper presents the preliminary results of these simulations for the star τ\tau Bo\"otis, using a newly reconstructed magnetic field map based on previously published observations. These simulations show interesting structures in the wind velocity around the star, consistent with the complex topology of its magnetic field.Comment: 8 pages, 2 figures, accepted for publication in the peer-reviewed proceedings of the 14th Australian Space Research Conference, held at the University of South Australia, 29th September - 1st October 201

    Nature versus Nurture: The curved spine of the galaxy cluster X-ray luminosity -- temperature relation

    Get PDF
    The physical processes that define the spine of the galaxy cluster X-ray luminosity -- temperature (L-T) relation are investigated using a large hydrodynamical simulation of the Universe. This simulation models the same volume and phases as the Millennium Simulation and has a linear extent of 500 h^{-1} Mpc. We demonstrate that mergers typically boost a cluster along but also slightly below the L-T relation. Due to this boost we expect that all of the very brightest clusters will be near the peak of a merger. Objects from near the top of the L-T relation tend to have assembled much of their mass earlier than an average halo of similar final mass. Conversely, objects from the bottom of the relation are often experiencing an ongoing or recent merger.Comment: 8 pages, 7 figures, submitted to MNRA

    A Cone Jet-Finding Algorithm for Heavy-Ion Collisions at LHC Energies

    Get PDF
    Standard jet finding techniques used in elementary particle collisions have not been successful in the high track density of heavy-ion collisions. This paper describes a modified cone-type jet finding algorithm developed for the complex environment of heavy-ion collisions. The primary modification to the algorithm is the evaluation and subtraction of the large background energy, arising from uncorrelated soft hadrons, in each collision. A detailed analysis of the background energy and its event-by-event fluctuations has been performed on simulated data, and a method developed to estimate the background energy inside the jet cone from the measured energy outside the cone on an event-by-event basis. The algorithm has been tested using Monte-Carlo simulations of Pb+Pb collisions at s=5.5\sqrt{s}=5.5 TeV for the ALICE detector at the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV and above with an energy resolution of 30\sim30%.Comment: 13 pages, 7 figure

    Fluctuation-Dissipation theorems and entropy production in relaxational systems

    Full text link
    We show that for stochastic dynamical systems out of equilibrium the violation of the fluctuation-dissipation equality is bounded by a function of the entropy production. The result applies to a much wider situation than `near equilibrium', comprising diffusion as well as glasses and other macroscopic systems far from equilibrium. For aging systems this bounds the age-frequency regimes in which the susceptibilities satisfy FDT in terms of the rate of decay of the H-function, a question intimately related to the reading of a thermometer placed in contact with the system.Comment: 4 pages, RevTex; formula and reference added plus various minor changes in the tex

    Seed-set evaluation of four male-sterile, female-fertile soybean lines using alfalfa leafcutting bees and honey bees as pollinators

    Get PDF
    Male-sterile, female-fertile plants were used to produce hybrid soybean seed. Manual cross-pollination using male-sterile plants to produce large quantities of hybrid seed is difficult and time-consuming because of the low success rate in cross-pollination. Insect pollinators may be suitable vectors to transfer pollen, but the most suitable vector for pollen transfer from the male parent to the female parent has not been identified for soybean. The objective of the present study was to evaluate seed-set on four male-sterile, female-fertile soybean lines by using alfalfa leafcutting bees (Megachile rotundata (F.)) and honey bees (Apis mellifera (L.)) as pollinators. Seed-set was evaluated in summers 2003 and 2005 near Ames, Iowa, USA and in summers 2003, 2004, and 2005 near Wooster, Ohio, USA. Neither the effect of pollinator species nor the interaction effect of pollinator species×location was significant for any year. Honey bees performed similarly to alfalfa leafcutting bees at both locations. The results indicated significant differences for seed-set among male-sterile lines, suggesting preferential pollination. Male-sterile lines, ms1(Urbana) and ms2 (Ames 2), had higher cross-pollinated seed-set compared to ms6 (Ames 1), and ms6 (Corsoy 79). At the Ames location, ms1ms1 (Urbana) plants had the highest seed-set (50·16 seeds per male-sterile plant in 2005). At the Wooster location, ms1ms1 (Urbana) plants also had the highest seed-set (92·04 seeds per male-sterile plant) in 2005. Costs and local conditions need to be addressed to support the choice of either pollinator species as a pollination vector to produce hybrid soybean seed

    STAR Results on High Transverse Momentum, Heavy Flavor and Electromagnetic Probes

    Get PDF
    We summarize here recent results from the STAR collaboration focusing on processes involving large momentum transfers. Measurements of angular correlations of di-hadrons are explored in both the pseudorapidity (eta) and azimuthal (phi) projections. In central Au+Au, an elongated structure is found in the eta projection which persists up to the highest measured pT. After quantifying the particle yield in this structure and subtracting it from the near-side yield, we observe that the remainder exhibits a behavior strikingly similar to that of the near-side yield in d+Au. For heavy flavor production, using electron-hadron correlations in p+p collisions, we obtain an estimate of the b-quark contribution to the non-photonic electrons in the pT region 3-6 GeV/c, and find it consistent with FONLL calculations. Together with the observed suppression of non-photonic electrons in Au+Au, this strongly suggests suppression of b-quark production in Au+Au collisions. We discuss results on the mid-rapidity Upsilon cross-section in p+p collisions. Finally, we present a proof-of-principle measurement of photon-hadron correlations in p+p collisions, paving the way for the tomographic study of the matter produced in central Au+Au via gamma-jet measurements.Comment: 8 pages, 4 figures. Proceedings of "Quark Matter 2006", 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collision

    A Circumbinary Planet in Orbit Around the Short-Period White-Dwarf Eclipsing Binary RR Cae

    Get PDF
    By using six new determined mid-eclipse times together with those collected from the literature, we found that the Observed-Calculated (O-C) curve of RR Cae shows a cyclic change with a period of 11.9 years and an amplitude of 14.3s, while it undergoes an upward parabolic variation (revealing a long-term period increase at a rate of dP/dt =+4.18(+-0.20)x10^(-12). The cyclic change was analyzed for the light-travel time effect that arises from the gravitational influence of a third companion. The mass of the third body was determined to be M_3*sin i' = 4.2(+-0.4) M_{Jup} suggesting that it is a circumbinary giant planet when its orbital inclination is larger than 17.6 degree. The orbital separation of the circumbinary planet from the central eclipsing binary is about 5.3(+-0.6)AU. The period increase is opposite to the changes caused by angular momentum loss via magnetic braking or/and gravitational radiation, nor can it be explained by the mass transfer between both components because of its detached configuration. These indicate that the observed upward parabolic change is only a part of a long-period (longer than 26.3 years) cyclic variation, which may reveal the presence of another giant circumbinary planet in a wide orbit.Comment: It will be published in the MNRA
    corecore