9 research outputs found

    Normative values of eccentric hip abduction strength in novice runners:an equation adjusting for age and gender

    No full text
    PURPOSE: Low eccentric strength of the hip abductors, might increase the risk of patellofemoral pain syndrome and iliotibial band syndrome in runners. No normative values for maximal eccentric hip abduction strength have been established. Therefore the purpose of this study was to establish normative values of maximal eccentric hip abduction strength in novice runners. METHODS: Novice healthy runners (n = 831) were recruited through advertisements at a hospital and a university. Maximal eccentric hip abduction strength was measured with a hand–held dynamometer. The demographic variables associated with maximal eccentric hip abduction strength from a univariate analysis were included in a multivariate linear regression model. Based on the results from the regression model, a regression equation for normative hip abduction strength is presented. RESULTS: A significant difference in maximal eccentric hip abduction strength was found between males and females: 1.62 ± 0.38 Nm/kg (SD) for males versus 1.41 ± 0.33 Nm/kg (SD) for females (p < 0.001). Age was associated with maximal eccentric hip abduction strength: per one year increase in age a ‐0.0045 ± 0.0013 Nm/kg (SD) decrease in strength was found, p < 0.001. Normative values were identified using a regression equation adjusting for age and gender. Based on this, the equation to calculate normative values for relative eccentric hip abduction strength became: (1.600 + (age * ‐0.005) + (gender (1 = male / 0 = female) * 0.215) ± 1 or 2 * 0.354) Nm/kg. CONCLUSION: Normative values for maximal eccentric hip abduction strength in novice runners can be calculated by taking into account the differences in strength across genders and the decline in strength that occurs with increasing age. Age and gender were associated with maximal eccentric hip abduction strength in novice runners, and these variables should be taken into account when evaluating eccentric hip abduction strength in this group of athletes. LEVEL OF EVIDENCE: 2

    Exercise modulation of tumour perfusion and hypoxia to improve radiotherapy response in prostate cancer

    Get PDF
    Background An increasing number of studies indicate that exercise plays an important role in the overall care of prostate cancer (PCa) patients before, during and after treatment. Historically, research has focused on exercise as a modulator of physical function, psychosocial well-being as well as a countermeasure to cancer- and treatment-related adverse effects. However, recent studies reveal that exercise may also directly influence tumour physiology that could beneficially affect the response to radiotherapy. Methods In this narrative review, we provide an overview of tumour vascular characteristics that limit the effect of radiation and establish a rationale for exercise as adjunct therapy during PCa radiotherapy. Further, we summarise the existing literature on exercise as a modulator of tumour perfusion and hypoxia and outline potential future research directions. Results Preclinical research has shown that exercise can reduce intratumoral hypoxia-a major limiting factor in radiotherapy-by improving tumour perfusion and vascularisation. In addition, preliminary evidence suggests that exercise training can improve radiotherapy treatment outcomes by increasing natural killer cell infiltration in a murine PCa model. Conclusions Exercise is a potentially promising adjunct therapy for men with PCa undergoing radiotherapy that may increase its effectiveness. However, exercise-induced tumour radiosensitisation remains to be confirmed in preclinical and clinical trials, as does the optimal exercise prescription to elicit such effects
    corecore