227 research outputs found

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: I. Threshold Behavior in Ionic-to-Neutral Transition

    Full text link
    Photoinduced dynamics of charge density and lattice displacements is calculated by solving the time-dependent Schr\"odinger equation for a one-dimensional extended Peierls-Hubbard model with alternating potentials for the mixed-stack organic charge-transfer complex, TTF-CA. A pulse of oscillating electric field is incorporated into the Peierls phase of the transfer integral. The frequency, the amplitude, and the duration of the pulse are varied to study the nonlinear and cooperative character of the photoinduced transition. When the dimerized ionic phase is photoexcited, the threshold behavior is clearly observed by plotting the final ionicity as a function of the increment of the total energy. Above the threshold photoexcitation, the electronic state reaches the neutral one with equidistant molecules after the electric field is turned off. The transition is initiated by nucleation of a metastable neutral domain, for which an electric field with frequency below the linear absorption peak is more effective than that at the peak. When the pulse is strong and short, the charge transfer takes place on the same time scale with the disappearance of dimerization. As the pulse becomes weak and long, the dimerization-induced polarization is disordered to restore the inversion symmetry on average before the charge transfer takes place to bring the system neutral. Thus, a paraelectric ionic phase is transiently realized by a weak electric field. It is shown that infrared light also induces the ionic-to-neutral transition, which is characterized by the threshold behavior.Comment: 24 pages, 11 figure

    Electronic and Lattice Dynamics in The Photoinduced Ionic-to-Neutral Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model

    Full text link
    Real-time dynamics of charge density and lattice displacements is studied during photoinduced ionic-to-neutral phase transitions by using a one-dimensional extended Peierls-Hubbard model with alternating potentials for the one-dimensional mixed-stack charge-transfer complex, TTF-CA. The time-dependent Schr\"odinger equation and the classical equation of motion are solved for the electronic and lattice parts, respectively. We show how neutral domains grow in the ionic background. As the photoexcitation becomes intense, more neutral domains are created. Above threshold intensity, the neutral phase is finally achieved. After the photoexcitation, ionic domains with wrong polarization also appear. They quickly reduce the averaged staggered lattice displacement, compared with the averaged ionicity. As the degree of initial lattice disorder increases, more solitons appear between these ionic domains with different polarizations, which obstruct the growth of neutral domains and slow down the transition.Comment: 9 pages, 10 figures, submitted to J. Phys. Soc. Jp

    Photoinduced metallic properties of one-dimensional strongly correlated electron systems

    Full text link
    We study photoinduced optical responses of one-dimensional strongly correlated electron systems. The optical conductivity spectra are calculated for the ground state and a photoexcited state in the one-dimensional Hubbard model at half filling by using the exact diagonalization method. It is found that, in the Mott insulator phase, the photoexcited state has large spectral weights including the Drude weight below the optical gap. As a consequence, the spectral weight above the optical gap is largely reduced. These results imply that a metallic state is induced by photoexcitation. Comparison between the photoexcited and hole-doped states shows that the photoexcitation is similar to chemical doping.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Direct evidence of electronic ferroelectricity in YbFe2O4 using neutron diffraction and nonlinear spectroscopy

    Get PDF
    We report the first observation of room temperature spontaneous electric polarization in an electronic ferroelectric material, a YbFe2O4 single crystal. The observation was based on second harmonic generation (SHG), a nonlinear optical process. Tensor analysis of the SHG signal revealed that this material has a polar charge superstructure with Cm symmetry. This result settles the long-term discussion on the uncertainty about electronic ferroelectric properties, including the charge order structure. We present a complete picture of the polar charge ordering of this material via consistent results from two different characterization methods. The SHG signal shows the same temperature dependence as the superlattice signal observed in neutron diffraction experiments. These results prove ferroelectric coupling to electron ordering in YbFe2O4, which results in electronic ferroelectricity which is enabled by the real space ordering of iron cations with different valences. The existence of electronic ferroelectricity holds promise for future electronics technologies where devices run a thousand times faster than frequency of the present CPU (a few gigahertz) embedded in smartphones, etc

    100 ps time-resolved solution scattering utilizing a wide-bandwidth X-ray beam from multilayer optics

    Get PDF
    A new method of time-resolved solution scattering utilizing X-ray multilayer optics is presented

    Anisotropic Magnetoresistance in Ga1x_{1-x}Mnx_xAs

    Full text link
    We have measured the magnetoresistance in a series of Ga1x_{1-x}Mnx_xAs samples with 0.033x\le x \le 0.053 for three mutually orthogonal orientations of the applied magnetic field. The spontaneous resistivity anisotropy (SRA) in these materials is negative (i.e. the sample resistance is higher when its magnetization is perpendicular to the measuring current than when the two are parallel) and has a magnitude on the order of 5% at temperatures near 10K and below. This stands in contrast to the results for most conventional magnetic materials where the SRA is considerably smaller in magnitude for those few cases in which a negative sign is observed. The magnitude of the SRA drops from its maximum at low temperatures to zero at TC_C in a manner that is consistent with mean field theory. These results should provide a significant test for emerging theories of transport in this new class of materials.Comment: 4 pages with 4 figures. Submitted to Physical Review
    corecore