3,627 research outputs found
Microscopically-based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization
In a recent series of papers, Gebremariam, Bogner, and Duguet derived a
microscopically based nuclear energy density functional by applying the Density
Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral
effective field theory (EFT) two- and three-nucleon interactions. Due to the
structure of the chiral interactions, each coupling in the DME functional is
given as the sum of a coupling constant arising from zero-range contact
interactions and a coupling function of the density arising from the
finite-range pion exchanges. Since the contact contributions have essentially
the same structure as those entering empirical Skyrme functionals, a
microscopically guided Skyrme phenomenology has been suggested in which the
contact terms in the DME functional are released for optimization to
finite-density observables to capture short-range correlation energy
contributions from beyond Hartree-Fock. The present paper is the first attempt
to assess the ability of the newly suggested DME functional, which has a much
richer set of density dependencies than traditional Skyrme functionals, to
generate sensible and stable results for nuclear applications. The results of
the first proof-of-principle calculations are given, and numerous practical
issues related to the implementation of the new functional in existing Skyrme
codes are discussed. Using a restricted singular value decomposition (SVD)
optimization procedure, it is found that the new DME functional gives
numerically stable results and exhibits a small but systematic reduction of our
test function compared to standard Skyrme functionals, thus justifying
its suitability for future global optimizations and large-scale calculations.Comment: 17 pages, 6 figure
Investigation of double beta decay with the NEMO-3 detector
The double beta decay experiment NEMO~3 has been taking data since February
2003. The aim of this experiment is to search for neutrinoless
() decay and investigate two neutrino double beta decay in
seven different isotopically enriched samples (Mo, Se,
Ca, Zr, Cd, Te and Nd). After analysis of
the data corresponding to 3.75 y, no evidence for decay in the
Mo and Se samples was found. The half-life limits at the 90%
C.L. are y and y, respectively.
Additionally for decay the following limits at the 90% C.L.
were obtained, y for Ca, y
for Zr and y for Nd. The
decay half-life values were precisely measured for all investigated isotopes.Comment: 12 pages, 4 figures, 5 tables; talk at conference on "Fundamental
Interactions Physics" (ITEP, Moscow, November 23-27, 2009
Overconstrained estimates of neutrinoless double beta decay within the QRPA
Estimates of nuclear matrix elements for neutrinoless double beta decay
(0nu2beta) based on the quasiparticle random phase approximations (QRPA) are
affected by theoretical uncertainties, which can be substantially reduced by
fixing the unknown strength parameter g_pp of the residual particle-particle
interaction through one experimental constraint - most notably through the
two-neutrino double beta decay (2nu2beta) lifetime. However, it has been noted
that the g_pp adjustment via 2\nu2\beta data may bring QRPA models in
disagreement with independent data on electron capture (EC) and single beta
decay (beta^-) lifetimes. Actually, in two nuclei of interest for 0nu2beta
decay (Mo-100 and Cd-116), for which all such data are available, we show that
the disagreement vanishes, provided that the axial vector coupling g_A is
treated as a free parameter, with allowance for g_A<1 (``strong quenching'').
Three independent lifetime data (2nu2beta, EC, \beta^-) are then accurately
reproduced by means of two free parameters (g_pp, g_A), resulting in an
overconstrained parameter space. In addition, the sign of the 2nu2beta matrix
element M^2nu is unambiguously selected (M^2nu>0) by the combination of all
data. We discuss quantitatively, in each of the two nuclei, these
phenomenological constraints and their consequences for QRPA estimates of the
0nu2beta matrix elements and of their uncertainties.Comment: Revised version (27 pages, including 10 figures), focussed on Mo-100
and Cd-116. To appear in J. Phys. G: Nucl. Phys. (2008
Nuclear energy density optimization: Shell structure
Nuclear density functional theory is the only microscopical theory that can
be applied throughout the entire nuclear landscape. Its key ingredient is the
energy density functional. In this work, we propose a new parameterization
UNEDF2 of the Skyrme energy density functional. The functional optimization is
carried out using the POUNDerS optimization algorithm within the framework of
the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous
parameterization UNEDF1, restrictions on the tensor term of the energy density
have been lifted, yielding a very general form of the energy density functional
up to second order in derivatives of the one-body density matrix. In order to
impose constraints on all the parameters of the functional, selected data on
single-particle splittings in spherical doubly-magic nuclei have been included
into the experimental dataset. The agreement with both bulk and spectroscopic
nuclear properties achieved by the resulting UNEDF2 parameterization is
comparable with UNEDF1. While there is a small improvement on single-particle
spectra and binding energies of closed shell nuclei, the reproduction of
fission barriers and fission isomer excitation energies has degraded. As
compared to previous UNEDF parameterizations, the parameter confidence interval
for UNEDF2 is narrower. In particular, our results overlap well with those
obtained in previous systematic studies of the spin-orbit and tensor terms.
UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well
for both global nuclear properties and shell structure. However, after adding
new data aiming to better constrain the nuclear functional, its quality has
improved only marginally. These results suggest that the standard Skyrme energy
density has reached its limits and significant changes to the form of the
functional are needed.Comment: 18 pages, 13 figures, 12 tables; resubmitted for publication to Phys.
Rev. C after second review by refere
Computing Heavy Elements
Reliable calculations of the structure of heavy elements are crucial to
address fundamental science questions such as the origin of the elements in the
universe. Applications relevant for energy production, medicine, or national
security also rely on theoretical predictions of basic properties of atomic
nuclei. Heavy elements are best described within the nuclear density functional
theory (DFT) and its various extensions. While relatively mature, DFT has never
been implemented in its full power, as it relies on a very large number (~
10^9-10^12) of expensive calculations (~ day). The advent of leadership-class
computers, as well as dedicated large-scale collaborative efforts such as the
SciDAC 2 UNEDF project, have dramatically changed the field. This article gives
an overview of the various computational challenges related to the nuclear DFT,
as well as some of the recent achievements.Comment: Proceeding of the Invited Talk given at the SciDAC 2011 conference,
Jul. 10-15, 2011, Denver, C
DigiBuzz-VTT – Towards digital twin’s concrete commercial exploitation
The DigiBuzz-VTT project, a part of the DigiBuzz common effort, focused on the applications of digital twins in manufacturing industry ecosystems. The DigiBuzz-VTT project had two main focuses, 1) functional digital twins, or simulation-based digital twins, of machines and machine systems and their applications, and 2) the life cycle management of digital twins (the digital part of the twin), emphasising data modelling and data management. These themes were studied from the technical and from the business point of views. The detailed research topics were:• Business opportunities and added value of digital twins for manufacturing industry• Data-based digital twins, use of machine learning for feature recognition• The status of standardisation for the lifecycle data management of digital twins, means for preserving model data• Hybrid modelling with digital twins, combination of experimental and simulation data• The optimisation of the measurement points location, method development• The use of Kalman filters in estimating simulation data correlation with measured data• The status of Industrial Internet of Things (IIoT) for digital twinsThis report summarises the implementation of the DigiBuzz-VTT project and lists the main deliverables of the project. The project produced several scientific articles and research reports, which report the research results in detail
Nuclear matrix elements of neutrinoless double beta decay with improved short-range correlations
Nuclear matrix elements of the neutrinoless double beta decays of 96Zr,
100Mo, 116Cd, 128Te, 130Te and 136Xe are calculated for the light-neutrino
exchange mechanism by using the proton-neutron quasiparticle random-phase
approximation (pnQRPA) with a realistic nucleon-nucleon force. The g_pp
parameter of the pnQRPA is fixed by the data on the two-neutrino double beta
decays and single beta decays. The finite size of a nucleon, the higher-order
terms of nucleonic weak currents, and the nucleon-nucleon short-range
correlations (s.r.c) are taken into account. The s.r.c. are computed by the
traditional Jastrow method and by the more advanced unitary correlation
operator method (UCOM). Comparison of the results obtained by the two methods
is carried out. The UCOM computed matrix elements turn out to be considerably
larger than the Jastrow computed ones. This result is important for the
assessment of the neutrino-mass sensitivity of the present and future double
beta experiments.Comment: Two figures, to be published in Physical Review C (2007) as a regular
articl
- …