90 research outputs found

    Single donor ionization energies in a nanoscale CMOS channel

    Full text link
    One consequence of the continued downwards scaling of transistors is the reliance on only a few discrete atoms to dope the channel, and random fluctuations of the number of these dopants is already a major issue in the microelectonics industry. While single-dopant signatures have been observed at low temperature, studying the impact of only one dopant up to room temperature requires extremely small lengths. Here, we show that a single arsenic dopant dramatically affects the off-state behavior of an advanced microelectronics field effect transistor (FET) at room temperature. Furthermore, the ionization energy of this dopant should be profoundly modified by the close proximity of materials with a different dielectric constant than the host semiconductor. We measure a strong enhancement, from 54meV to 108meV, of the ionization energy of an arsenic atom located near the buried oxide. This enhancement is responsible for the large current below threshold at room temperature and therefore explains the large variability in these ultra-scaled transistors. The results also suggest a path to incorporating quantum functionalities into silicon CMOS devices through manipulation of single donor orbitals

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    Global Biodiversity and Phylogenetic Evaluation of Remipedia (Crustacea)

    Get PDF
    Remipedia is one of the most recently discovered classes of crustaceans, first described in 1981 from anchialine caves in the Bahamas Archipelago. The class is divided into the order Enantiopoda, represented by two fossil species, and Nectiopoda, which contains all known extant remipedes. Since their discovery, the number of nectiopodan species has increased to 24, half of which were described during the last decade. Nectiopoda exhibit a disjunct global distribution pattern, with the highest abundance and diversity in the Caribbean region, and isolated species in the Canary Islands and in Western Australia. Our review of Remipedia provides an overview of their ecological characteristics, including a detailed list of all anchialine marine caves, from which species have been recorded. We discuss alternative hypotheses of the phylogenetic position of Remipedia within Arthropoda, and present first results of an ongoing molecular-phylogenetic analysis that do not support the monophyly of several nectiopodan taxa. We believe that a taxonomic revision of Remipedia is absolutely essential, and that a comprehensive revision should include a reappraisal of the fossil record

    De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arthropods are the most diverse animal phylum, but their genomic resources are relatively few. While the genome of the branchiopod <it>Daphnia pulex </it>is now available, no other large-scale crustacean genomic resources are available for comparison. In particular, genomic resources are lacking for the most tractable laboratory model of crustacean development, the amphipod <it>Parhyale hawaiensis</it>. Insight into shared and divergent characters of crustacean genomes will facilitate interpretation of future developmental, biomedical, and ecological research using crustacean models.</p> <p>Results</p> <p>To generate a transcriptome enriched for maternally provided and zygotically transcribed developmental genes, we created cDNA from ovaries and embryos of <it>P. hawaiensis</it>. Using 454 pyrosequencing, we sequenced over 1.1 billion bases of this cDNA, and assembled them <it>de novo </it>to create, to our knowledge, the second largest crustacean genomic resource to date. We found an unusually high proportion of C2H2 zinc finger-containing transcripts, as has also been reported for the genome of the pea aphid <it>Acyrthosiphon pisum</it>. Consistent with previous reports, we detected trans-spliced transcripts, but found that they did not noticeably impact transcriptome assembly. Our assembly products yielded 19,067 unique BLAST hits against <b>nr </b>(E-value cutoff e-10). These included over 400 predicted transcripts with significant similarity to <it>D. pulex </it>sequences but not to sequences of any other animal. Annotation of several hundred genes revealed <it>P. hawaiensis </it>homologues of genes involved in development, gametogenesis, and a majority of the members of six major conserved metazoan signaling pathways.</p> <p>Conclusions</p> <p>The amphipod <it>P. hawaiensis </it>has higher transcript complexity than known insect transcriptomes, and trans-splicing does not appear to be a major contributor to this complexity. We discuss the importance of a reliable comparative genomic framework within which to consider findings from new crustacean models such as <it>D. pulex </it>and <it>P. hawaiensis</it>, as well as the need for development of further substantial crustacean genomic resources.</p

    Automatisierung des Entwurfs vollständig testbarer Schaltungen

    Get PDF
    Die Kosten für die Testvorbereitung, Testerzeugung und Testdurchführung wachsen überproportional mit der Komplexität anwendungsspezifischer Schaltungen, und die Teststrategie sollte daher bereits in einer sehr frühen Phase des Schaltungsentwurfs festgelegt und berücksichtigt werden. In diesem Artikel werden logische Grundzellen und Algorithmen zur Unterstützung des pseudo-erschöpfenden Tests vorgestellt. Diese Teststrategie hat den Vorteil, daß die äußerst rechenzeitaufwendige Testmustererzeugung entfällt und zugleich eine vollständige Fehlererfassung auf Gatterebene garantiert ist. Die vorgestellten Grundzellen dienen der Zerlegung der Gesamtschaltung in erschöpfend testbare Teile, die präsentierten Algorithmen sollen diese Segmentierungszellen so plazieren, daß der Mehraufwand an Silizium gering bleibt. Hierzu wurden Varianten sogenannter "Hill-Climbing" und "Simulated-Annealing"-Verfahren entwickelt

    Naupliar and Metanaupliar development of Thysanoessa raschii (Malacostraca, Euphausiacea) from Godthåbsfjord, Greenland, with a reinstatement of the ancestral status of the free-living Nauplius in Malacostracan evolution

    Get PDF
    The presence of a characteristic crustacean larval type, the nauplius, in many crustacean taxa has often been considered one of the few uniting characters of the Crustacea. Within Malacostraca, the largest crustacean group, nauplii are only present in two taxa, Euphauciacea (krill) and Decapoda Dendrobranchiata. The presence of nauplii in these two taxa has traditionally been considered a retained primitive characteristic, but free-living nauplii have also been suggested to have reappeared a couple of times from direct developing ancestors during malacostracan evolution. Based on a re-study of Thysanoessa raschii (Euphausiacea) using preserved material collected in Greenland, we readdress this important controversy in crustacean evolution, and, in the process, redescribe the naupliar and metanaupliar development of T. raschii. In contrast to most previous studies of euphausiid development, we recognize three (not two) naupliar (= ortho-naupliar) stages (N1-N3) followed by a metanauplius (MN). While there are many morphological changes between nauplius 1 and 2 (e.g., appearance of long caudal setae), the changes between nauplius 2 and 3 are few but distinct. They involve the size of some caudal spines (largest in N3) and the setation of the antennal endopod (an extra seta in N3). A wider comparison between free-living nauplii of both Malacostraca and non-Malacostraca revealed similarities between nauplii in many taxa both at the general level (e.g., the gradual development and number of appendages) and at the more detailed level (e.g., unclear segmentation of naupliar appendages, caudal setation, presence of frontal filaments). We recognize these similarities as homologies and therefore suggest that free-living nauplii were part of the ancestral malacostracan type of development. The derived morphology (e.g., lack of feeding structures, no fully formed gut, high content of yolk) of both euphausiid and dendrobranchiate nauplii is evidently related to their non-feeding (lecithotrophic) status

    Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: Useful molecular markers for phylogenetic and population studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copepods are highly diverse and abundant, resulting in extensive ecological radiation in marine ecosystems. <it>Calanus sinicus </it>dominates continental shelf waters in the northwest Pacific Ocean and plays an important role in the local ecosystem by linking primary production to higher trophic levels. A lack of effective molecular markers has hindered phylogenetic and population genetic studies concerning copepods. As they are genome-level informative, mitochondrial DNA sequences can be used as markers for population genetic studies and phylogenetic studies.</p> <p>Results</p> <p>The mitochondrial genome of <it>C. sinicus </it>is distinct from other arthropods owing to the concurrence of multiple non-coding regions and a reshuffled gene arrangement. Further particularities in the mitogenome of <it>C. sinicus </it>include low A + T-content, symmetrical nucleotide composition between strands, abbreviated stop codons for several PCGs and extended lengths of the genes <it>atp6 </it>and <it>atp8 </it>relative to other copepods. The monophyletic Copepoda should be placed within the Vericrustacea. The close affinity between Cyclopoida and Poecilostomatoida suggests reassigning the latter as subordinate to the former. Monophyly of Maxillopoda is rejected. Within the alignment of 11 <it>C. sinicus </it>mitogenomes, there are 397 variable sites harbouring three 'hotspot' variable sites and three microsatellite loci.</p> <p>Conclusion</p> <p>The occurrence of the <it>circular subgenomic fragment </it>during laboratory assays suggests that special caution should be taken when sequencing mitogenomes using long PCR. Such a phenomenon may provide additional evidence of mitochondrial DNA recombination, which appears to have been a prerequisite for shaping the present mitochondrial profile of <it>C. sinicus </it>during its evolution. The lack of synapomorphic gene arrangements among copepods has cast doubt on the utility of gene order as a useful molecular marker for deep phylogenetic analysis. However, mitochondrial genomic sequences have been valuable markers for resolving phylogenetic issues concerning copepods. The variable site maps of <it>C. sinicus </it>mitogenomes provide a solid foundation for population genetic studies.</p
    corecore