445 research outputs found

    Artificial scaling laws of the dynamical magnetic susceptibility in heavy-fermion systems

    Full text link
    We report here how artificial, thus erroneous, scaling laws of the dynamical magnetic susceptibility can be obtained when data are not treated carefully. We consider the example of the heavy-fermion system Ce0.925_{0.925}La0.075_{0.075}Ru2_{2}Si2_{2} and we explain how different kinds of artificial scaling laws in E/TβE/T^\beta can be plotted in a low temperature regime where the dynamical susceptibility is nearly temperature independent.Comment: 4 pages, 4 figure

    Low energy spin fluctuations in the heavy fermion compound Ce0.925_{0.925}La0.075_{0.075}Ru2_{2}Si2_{2}

    Full text link
    We report inelastic neutron scattering measurements performed on a single crystal of the heavy fermion compound Ce0.925_{0.925}La0.075_{0.075}Ru2_{2}Si2_{2}, which is at the borderline between an antiferromagnetically ordered and a paramagnetic ground state. Intensity maps as a function of wavevector and energy (0.1<E<1.20.1<E<1.2 meV) were obtained at temperatures T=0.1T=0.1 and 2 K, using the time-of-flight spectrometer IRIS. An unexpected saturation of the relaxation rate and static susceptibility of the spin fluctuations is found at low temperatures.Comment: 2 pages, 2 figures, SCES'04 Proceeding

    Further analysis of the quantum critical point of Ce1x_{1-x}Lax_{x}Ru2_{2}Si2_{2}

    Full text link
    New data on the spin dynamics and the magnetic order of Ce1x_{1-x}Lax_{x}Ru2_{2}Si2_{2} are presented. The importance of the Kondo effect at the quantum critical point of this system is emphasized from the behaviour of the relaxation rate at high temperature and from the variation of the ordered moment with respect to the one of the N\'eel temperature for various xx.Comment: Contribution for the Festschrift on the occasion of Hilbert von Loehneysen 60 th birthday. To be published as a special issue in the Journal of Low Temperature Physic

    Importance of In-Plane Anisotropy in the Quasi Two-Dimensional Antiferromagnet BaNi2_{2}V2_{2}O8_{8}

    Full text link
    The phase diagram of the quasi two-dimensional antiferromagnet BaNi2_{2}V2_{2}O8_{8} is studied by specific heat, thermal expansion, magnetostriction, and magnetization for magnetic fields applied perpendicular to c\mathbf{c}. At μ0H1.5\mu_0H^{*}\simeq1.5 T, a crossover to a high-field state, where TN(H)T_N(H) increases linearly, arises from a competition of intrinsic and field-induced in-plane anisotropies. The pressure dependences of TNT_N and HH^{*} are interpreted using the picture of a pressure-induced in-plane anisotropy. Even at zero field and ambient pressure, in-plane anisotropy cannot be neglected, which implies deviations from pure Berezinskii-Kosterlitz-Thouless behavior.Comment: 4 pages, 4 figure

    Field-induced quantum fluctuations in the heavy fermion superconductor CeCu2Ge2

    Get PDF
    Quantum-mechanical fluctuations in strongly correlated electron systems cause unconventional phenomena such as non-Fermi liquid behavior, and arguably high temperature superconductivity. Here we report the discovery of a field-tuned quantum critical phenomenon in stoichiometric CeCu2Ge2, a spin density wave ordered heavy fermion metal that exhibits unconventional superconductivity under ~ 10 GPa of applied pressure. Our finding of the associated quantum critical spin fluctuations of the antiferromagnetic spin density wave order, dominating the local fluctuations due to single-site Kondo effect, provide new information about the underlying mechanism that can be important in understanding superconductivity in this novel compound.Comment: Heavy Fermion, Quantum Critical Phenomeno

    Superconductivity mediated by a soft phonon mode: specific heat, resistivity, thermal expansion and magnetization of YB6

    Full text link
    The superconductor YB6 has the second highest critical temperature Tc among the boride family MBn. We report measurements of the specific heat, resistivity, magnetic susceptibility and thermal expansion from 2 to 300 K, using a single crystal with Tc = 7.2 K. The superconducting gap is characteristic of medium-strong coupling. The specific heat, resistivity and expansivity curves are deconvolved to yield approximations of the phonon density of states, the spectral electron-phonon scattering function and the phonon density of states weighted by the frequency-dependent Grueneisen parameter respectively. Lattice vibrations extend to high frequencies >100 meV, but a dominant Einstein-like mode at ~8 meV, associated with the vibrations of yttrium ions in oversized boron cages, appears to provide most of the superconducting coupling and gives rise to an unusual temperature behavior of several observable quantities. A surface critical field Hc3 is also observed.Comment: 29 pages, 5 tables, 17 figures. Accepted for publication in Phys. Rev.

    New Superconducting and Magnetic Phases Emerge on the Verge of Antiferromagnetism in CeIn3_3

    Full text link
    We report the discovery of new superconducting and novel magnetic phases in CeIn3_3 on the verge of antiferromagnetism (AFM) under pressure (PP) through the In-nuclear quadrupole resonance (NQR) measurements. We have found a PP-induced phase separation of AFM and paramagnetism (PM) without any trace for a quantum phase transition in CeIn3_3. A new type of superconductivity (SC) was found in P=2.282.5P=2.28-2.5 GPa to coexist with AFM that is magnetically separated from PM where the heavy fermion SC takes place. We propose that the magnetic excitations such as spin-density fluctuations induced by the first-order magnetic phase transition might mediate attractive interaction to form Cooper pairs.Comment: 4 pages, 4 EPS figures, submitted to J. Phys. Soc. Jp
    corecore