57 research outputs found

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum

    Differential interactions between IGFBP-3 and transforming growth factor-beta (TGF-Ξ²) in normal vs cancerous breast epithelial cells

    Get PDF
    In addition to modulating insulin-like growth factors action, it is now clear that insulin-like growth factor-binding protein-3 also has intrinsic effects on cell growth and survival. We have compared the effects of insulin-like growth factor-binding protein-3 and transforming growth factor-beta on cell proliferation and death of Hs578T cells and the normal breast epithelial cell line, MCF-10A. The growth of MCF-10A cells was inhibited at low concentrations of insulin-like growth factor-binding protein-3 but stimulated at high concentrations. These differential effects were unaffected in the presence of an insulin-like growth factor-I receptor antagonist. A synthetic peptide corresponding to the serine phosphorylation domain of insulin-like growth factor-binding protein-3 (that does not bind to insulin-like growth factors) also mimicked these differential actions. The growth of both cell lines was significantly inhibited by transforming growth factor-beta, this was associated with a 14-fold increase of insulin-like growth factor-binding protein-3 secreted by the Hs578T cells but a five-fold decrease of insulin-like growth factor-binding protein-3 secreted by MCF-10A cells. Replacement doses of exogenous insulin-like growth factor-binding protein-3 overcame the transforming growth factor-beta-induced growth inhibition in the MCF-10A cells. Cell death induced by ceramide was significantly reduced by insulin-like growth factor-binding protein-3 in the MCF-10A cells and depleting insulin-like growth factor-binding protein-3 with transforming growth factor-beta in these cells consequently increased their susceptibility to ceramide. In contrast, insulin-like growth factor-binding protein-3 enhanced apoptosis induced by ceramide in the Hs578T cells but transforming growth factor-beta treated Hs578T cells were resistant to apoptosis. The addition of anti-sense mRNA to insulin-like growth factor-binding protein-3 significantly abrogated this effect of transforming growth factor-beta. These data indicate that insulin-like growth factor-binding protein-3 has intrinsic activity capable of inhibiting or enhancing the growth and survival of breast epithelial cells depending on the cell line and exposure to other cytokines

    CX3CR1 Is Expressed by Human B Lymphocytes and Meditates CX3CL1 Driven Chemotaxis of Tonsil Centrocytes

    Get PDF
    Background: Fractalkine/CX(3)CL1, a surface chemokine, binds to CX(3)CR1 expressed by different lymphocyte subsets. Since CX(3)CL1 has been detected in the germinal centres of secondary lymphoid tissue, in this study we have investigated CX(3)CR1 expression and function in human naive, germinal centre and memory B cells isolated from tonsil or peripheral blood.Methodology/Principal Findings: We demonstrate unambiguously that highly purified human B cells from tonsil and peripheral blood expressed CX(3)CR1 at mRNA and protein levels as assessed by quantitative PCR, flow cytometry and competition binding assays. In particular, naive, germinal centre and memory B cells expressed CX(3)CR1 but only germinal centre B cells were attracted by soluble CX(3)CL1 in a transwell assay. CX(3)CL1 signalling in germinal centre B cells involved PI3K, Erk1/2, p38, and Src phosphorylation, as assessed by Western blot experiments. CX(3)CR1(+) germinal centre B cells were devoid of centroblasts and enriched for centrocytes that migrated to soluble CX(3)CL1. ELISA assay showed that soluble CX(3)CL1 was secreted constitutively by follicular dendritic cells and T follicular helper cells, two cell populations homing in the germinal centre light zone as centrocytes. At variance with that observed in humans, soluble CX(3)CL1 did not attract spleen B cells from wild type mice. OVA immunized CX(3)CR1-/- or CX(3)CL1-/- mice showed significantly decreased specific IgG production compared to wild type mice.Conclusion/Significance: We propose a model whereby human follicular dendritic cells and T follicular helper cells release in the light zone of germinal centre soluble CX(3)CL1 that attracts centrocytes. The functional implications of these results warrant further investigation

    Essential Roles for Soluble Virion-Associated Heparan Sulfonated Proteoglycans and Growth Factors in Human Papillomavirus Infections

    Get PDF
    A subset of human papillomavirus (HPV) infections is causally related to the development of human epithelial tumors and cancers. Like a number of pathogens, HPV entry into target cells is initiated by first binding to heparan sulfonated proteoglycan (HSPG) cell surface attachment factors. The virus must then move to distinct secondary receptors, which are responsible for particle internalization. Despite intensive investigation, the mechanism of HPV movement to and the nature of the secondary receptors have been unclear. We report that HPV16 particles are not liberated from bound HSPG attachment factors by dissociation, but rather are released by a process previously unreported for pathogen-host cell interactions. Virus particles reside in infectious soluble high molecular weight complexes with HSPG, including syndecan-1 and bioactive compounds, like growth factors. Matrix mellatoproteinase inhibitors that block HSPG and virus release from cells interfere with virus infection. Employing a co-culture assay, we demonstrate HPV associated with soluble HSPG-growth factor complexes can infect cells lacking HSPG. Interaction of HPV-HSPG-growth factor complexes with growth factor receptors leads to rapid activation of signaling pathways important for infection, whereas a variety of growth factor receptor inhibitors impede virus-induced signaling and infection. Depletion of syndecan-1 or epidermal growth factor and removal of serum factors reduce infection, while replenishment of growth factors restores infection. Our findings support an infection model whereby HPV usurps normal host mechanisms for presenting growth factors to cells via soluble HSPG complexes as a novel method for interacting with entry receptors independent of direct virus-cell receptor interactions

    A model to explain specific cellular communications and cellular harmony:- a hypothesis of coupled cells and interactive coupling molecules

    Full text link
    • …
    corecore