351 research outputs found

    On the Tomography of Networks and Multicast Trees

    Full text link
    In this paper we model the tomography of scale free networks by studying the structure of layers around an arbitrary network node. We find, both analytically and empirically, that the distance distribution of all nodes from a specific network node consists of two regimes. The first is characterized by rapid growth, and the second decays exponentially. We also show that the nodes degree distribution at each layer is a power law with an exponential cut-off. We obtain similar results for the layers surrounding the root of multicast trees cut from such networks, as well as the Internet. All of our results were obtained both analytically and on empirical Interenet data

    Localization transition on complex networks via spectral statistics

    Full text link
    The spectral statistics of complex networks are numerically studied. The features of the Anderson metal-insulator transition are found to be similar for a wide range of different networks. A metal-insulator transition as a function of the disorder can be observed for different classes of complex networks for which the average connectivity is small. The critical index of the transition corresponds to the mean field expectation. When the connectivity is higher, the amount of disorder needed to reach a certain degree of localization is proportional to the average connectivity, though a precise transition cannot be identified. The absence of a clear transition at high connectivity is probably due to the very compact structure of the highly connected networks, resulting in a small diameter even for a large number of sites.Comment: 6 pages, expanded introduction and referencess (to appear in PRE

    Volatility of Linear and Nonlinear Time Series

    Full text link
    Previous studies indicate that nonlinear properties of Gaussian time series with long-range correlations, uiu_i, can be detected and quantified by studying the correlations in the magnitude series ui|u_i|, i.e., the ``volatility''. However, the origin for this empirical observation still remains unclear, and the exact relation between the correlations in uiu_i and the correlations in ui|u_i| is still unknown. Here we find analytical relations between the scaling exponent of linear series uiu_i and its magnitude series ui|u_i|. Moreover, we find that nonlinear time series exhibit stronger (or the same) correlations in the magnitude time series compared to linear time series with the same two-point correlations. Based on these results we propose a simple model that generates multifractal time series by explicitly inserting long range correlations in the magnitude series; the nonlinear multifractal time series is generated by multiplying a long-range correlated time series (that represents the magnitude series) with uncorrelated time series [that represents the sign series sgn(ui)sgn(u_i)]. Our results of magnitude series correlations may help to identify linear and nonlinear processes in experimental records.Comment: 7 pages, 5 figure

    Width of percolation transition in complex networks

    Full text link
    It is known that the critical probability for the percolation transition is not a sharp threshold, actually it is a region of non-zero width Δpc\Delta p_c for systems of finite size. Here we present evidence that for complex networks Δpcpcl\Delta p_c \sim \frac{p_c}{l}, where lNνoptl \sim N^{\nu_{opt}} is the average length of the percolation cluster, and NN is the number of nodes in the network. For Erd\H{o}s-R\'enyi (ER) graphs νopt=1/3\nu_{opt} = 1/3, while for scale-free (SF) networks with a degree distribution P(k)kλP(k) \sim k^{-\lambda} and 3<λ<43<\lambda<4, νopt=(λ3)/(λ1)\nu_{opt} = (\lambda-3)/(\lambda-1). We show analytically and numerically that the \textit{survivability} S(p,l)S(p,l), which is the probability of a cluster to survive ll chemical shells at probability pp, behaves near criticality as S(p,l)=S(pc,l)exp[(ppc)l/pc]S(p,l) = S(p_c,l) \cdot exp[(p-p_c)l/p_c]. Thus for probabilities inside the region ppc<pc/l|p-p_c| < p_c/l the behavior of the system is indistinguishable from that of the critical point

    Scale-Free Networks Emerging from Weighted Random Graphs

    Full text link
    We study Erd\"{o}s-R\'enyi random graphs with random weights associated with each link. We generate a new ``Supernode network'' by merging all nodes connected by links having weights below the percolation threshold (percolation clusters) into a single node. We show that this network is scale-free, i.e., the degree distribution is P(k)kλP(k)\sim k^{-\lambda} with λ=2.5\lambda=2.5. Our results imply that the minimum spanning tree (MST) in random graphs is composed of percolation clusters, which are interconnected by a set of links that create a scale-free tree with λ=2.5\lambda=2.5. We show that optimization causes the percolation threshold to emerge spontaneously, thus creating naturally a scale-free ``supernode network''. We discuss the possibility that this phenomenon is related to the evolution of several real world scale-free networks

    Stromal Gli2 activity coordinates a niche signaling program for mammary epithelial stem cells

    Get PDF
    The stem cell niche is a complex local signaling microenvironment that sustains stem cell activity during organ maintenance and regeneration. The mammary gland niche must support its associated stem cells while also responding to systemic hormonal regulation that triggers pubertal changes. We find that Gli2, the major Hedgehog pathway transcriptional effector, acts within mouse mammary stromal cells to direct a hormoneresponsive niche signaling program by activating expression of factors that regulate epithelial stem cells as well as receptors for the mammatrophic hormones estrogen and growth hormone.Whereas prior studies implicate stem cell defects in human disease, this work shows that niche dysfunction may also cause disease, with possible relevance for human disorders and in particular the breast growth pathogenesis associated with combined pituitary hormone deficiency. Copyright 2016 by the American Association for the Advancement of Science, all rights reserved.116Ysciescopu

    Nanopatterning of oxide 2-dimensional electron systems using low-temperature ion milling

    Get PDF
    We present a \u27top-down\u27 patterning technique based on ion milling performed at low-temperature, for the realization of oxide two-dimensional electron system devices with dimensions down to 160 nm. Using electrical transport and scanning Superconducting QUantum Interference Device measurements we demonstrate that the low-temperature ion milling process does not damage the 2DES properties nor creates oxygen vacancies-related conducting paths in the STO substrate. As opposed to other procedures used to realize oxide 2DES devices, the one we propose gives lateral access to the 2DES along the in-plane directions, finally opening the way to coupling with other materials, including superconductors

    Effect of Disorder Strength on Optimal Paths in Complex Networks

    Full text link
    We study the transition between the strong and weak disorder regimes in the scaling properties of the average optimal path opt\ell_{\rm opt} in a disordered Erd\H{o}s-R\'enyi (ER) random network and scale-free (SF) network. Each link ii is associated with a weight τiexp(ari)\tau_i\equiv\exp(a r_i), where rir_i is a random number taken from a uniform distribution between 0 and 1 and the parameter aa controls the strength of the disorder. We find that for any finite aa, there is a crossover network size N(a)N^*(a) at which the transition occurs. For NN(a)N \ll N^*(a) the scaling behavior of opt\ell_{\rm opt} is in the strong disorder regime, with optN1/3\ell_{\rm opt} \sim N^{1/3} for ER networks and for SF networks with λ4\lambda \ge 4, and optN(λ3)/(λ1)\ell_{\rm opt} \sim N^{(\lambda-3)/(\lambda-1)} for SF networks with 3<λ<43 < \lambda < 4. For NN(a)N \gg N^*(a) the scaling behavior is in the weak disorder regime, with optlnN\ell_{\rm opt}\sim\ln N for ER networks and SF networks with λ>3\lambda > 3. In order to study the transition we propose a measure which indicates how close or far the disordered network is from the limit of strong disorder. We propose a scaling ansatz for this measure and demonstrate its validity. We proceed to derive the scaling relation between N(a)N^*(a) and aa. We find that N(a)a3N^*(a)\sim a^3 for ER networks and for SF networks with λ4\lambda\ge 4, and N(a)a(λ1)/(λ3)N^*(a)\sim a^{(\lambda-1)/(\lambda-3)} for SF networks with 3<λ<43 < \lambda < 4.Comment: 6 pages, 6 figures. submitted to Phys. Rev.

    Critical points in the Bragg glass phase of a weakly pinned crystal of Ca3_3Rh4_4Sn13_{13}

    Full text link
    New experimental data are presented on the scan rate dependence of the magnetization hysteresis width ΔM(H)\Delta M(H) (\propto critical current density Jc(H)J_c(H)) in isothermal MHM-H scans in a weakly pinned single crystal of Ca3_3Rh4_4Sn13_{13}, which displays second magnetization peak (SMP) anomaly as distinct from the peak effect (PE). We observe an interesting modulation in the field dependence of a parameter which purports to measure the dynamical annealing of the disordered bundles of vortices injected through the sample edges towards the destined equilibrium vortex state at a given HH. These data, in conjunction with the earlier observations made while studying the thermomagnetic history dependence in Jc(H)J_c(H) in the tracing of the minor hysteresis loops, imply that the partially disordered state heals towards the more ordered state between the peak field of the SMP anomaly and the onset field of the PE. The vortex phase diagram in the given crystal of Ca3_3Rh4_4Sn13_{13} has been updated in the context of the notion of the phase coexistence of the ordered and disordered regions between the onset field of the SMP anomaly and the spinodal line located just prior to the irreversibility line. A multi-critical point and a critical point in the (H,TH,T) region of the Bragg glass phase have been marked in this phase diagram and the observed behaviour is discussed in the light of recent data on multi-critical point in the vortex phase diagram in a single crystal of Nb.Comment: To appear in Current trends in Vortex State Studies - Pramana J. Physic

    Surface superconductivity in multilayered rhombohedral graphene: Supercurrent

    Full text link
    The supercurrent for the surface superconductivity of a flat-band multilayered rhombohedral graphene is calculated. Despite the absence of dispersion of the excitation spectrum, the supercurrent is finite. The critical current is proportional to the zero-temperature superconducting gap, i.e., to the superconducting critical temperature and to the size of the flat band in the momentum space
    corecore