1,292 research outputs found
PTTG/securin activates expression of p53 and modulates its function
BACKGROUND: Pituitary tumor transforming gene (PTTG) is a novel oncogene that is expressed abundantly in most tumors. Overexpression of PTTG induces cellular transformation and promotes tumor formation in nude mice. PTTG has been implicated in various cellular processes including sister chromatid separation during cell division as well as induction of apoptosis through p53-dependent and p53-independent mechanisms. The relationship between PTTG and p53 remains unclear, however. RESULTS: Here we report the effects of overexpression of PTTG on the expression and function of p53. Our results indicate that overexpression of PTTG regulates the expression of the p53 gene at both the transcriptional and translational levels and that this ability of PTTG to activate the expression of p53 gene is dependent upon the p53 status of the cell. Deletion analysis of the p53 gene promoter revealed that only a small region of the p53 gene promoter is required for its activation by PTTG and further indicated that the activation of p53 gene by PTTG is an indirect effect that is mediated through the regulation of the expression of c-myc, which then interacts with the p53 gene promoter. Our results also indicate that overexpression of PTTG stimulates expression of the Bax gene, one of the known downstream targets of p53, and induces apoptosis in a human embryonic kidney cell line (HEK293). This stimulation of bax expression by PTTG is indirect and is mediated through modulation of p53 gene expression. CONCLUSIONS: Overexpression of PTTG activates the expression of p53 and modulates its function, with this action of PTTG being mediated through the regulation of c-myc expression. PTTG also up-regulates the activity of the bax promoter and increases the expression of bax through modulation of p53 expression
Outbreak of gastroenteritis caused by Yersinia pestis in Afghanistan.
Plague, which is most often caused by the bite of Yersinia pestis-infected fleas, is a rapidly progressing, serious disease that can be fatal without prompt antibiotic treatment. In late December 2007, an outbreak of acute gastroenteritis occurred in Nimroz Province of southern Afghanistan. Of the 83 probable cases of illness, 17 died (case fatality 20·5%). Being a case was associated with consumption or handling of camel meat (adjusted odds ratio 4·4, 95% confidence interval 2·2-8·8, P<0·001). Molecular testing of patient clinical samples and of tissue from the camel using PCR/electrospray ionization-mass spectrometry revealed DNA signatures consistent with Yersinia pestis. Confirmatory testing using real-time PCR and immunological seroconversion of one of the patients confirmed that the outbreak was caused by plague, with a rare gastrointestinal presentation. The study highlights the challenges of identifying infectious agents in low-resource settings; it is the first reported occurrence of plague in Afghanistan
Ovarian cancer mouse models: a summary of current models and their limitations
Development of mouse models representing human spontaneous ovarian cancer has been hampered by the lack of understanding of the etiology of this very complex disease. Mouse models representing the different types of ovarian cancer are needed to understand how epithelial ovarian cancer differs from granulosa cell tumors. Many different methods have been used to generate a viable genetic model with limited success. This review focuses on the methods of various investigators and the limitations of each model in establishing a reproducible and inheritable line to study this disease
Regulation of angiogenesis and invasion by human Pituitary tumor transforming gene (PTTG) through increased expression and secretion of matrix metalloproteinase-2 (MMP-2)
BACKGROUND: Pituitary tumor transforming gene (PTTG) is a novel oncogene that is expressed at higher level in most of the tumors analyzed to date compared to normal tissues. Existence of a relationship between PTTG levels and tumor angiogenesis and metastasis has been reported. However, the mechanisms by which PTTG achieve these functions remain unknown. In the present study, we investigated the effect of overexpression of PTTG on secretion and expression of metastasis-related metalloproteinase-2 (MMP-2) in HEK293 cells, cell migration, invasion and tubule formation. RESULTS: Transient or stable transfection of HEK293 cells with PTTG cDNA showed a significant increase in secretion and expression of MMP-2 measured by zymography, reverse transcriptase (RT/PCR), ELISA, and MMP-2 gene promoter activity. Furthermore, in our studies, we showed that tumor developed in nude mice on injection of HEK293 cells that constitutively express PTTG expressed high levels of both MMP-2 mRNA and protein, and MMP-2 activity. Conditioned medium collected from the HEK293 cells overexpressing PTTG showed a significant increase in cell migration, invasion and tubule formation of human umbilical vein endothelial cells (HUVEC). Pretreatment of conditioned medium with MMP-2-specific antibody significantly decreased these effects, suggesting that PTTG may contribute to tumor angiogenesis and metastasis via activation of proteolysis and increase in invasion through modulation of MMP-2 activity and expression. CONCLUSION: Our results provide novel information that PTTG contributes to cell migration, invasion and angiogenesis by induction of MMP-2 secretion and expression. Furthermore, we showed that tumors developed in nude mice on injection of HEK293 cells that constitutively express PTTG induce expression of MMP-2 and significantly increase its functional activity, suggesting a relationship between PTTG levels and MMP-2 which may play a critical role in regulation of tumor growth, angiogenesis and metastasis. Blocking of function of PTTG or down regulation of its expression in tumors may result in suppression of tumor growth and metastasis, through the down regulation of MMP-2 expression and activity. To our knowledge, this study is the first study demonstrating the modulation of MMP-2 expression and biological activity by PTTG
Best Practices for managing the fuzzy front-end of software development (SD): Insights from a systematic review of new product development (NPD) literature
Although they have followed independent paths of development, the two fields of software development (SD) and new product development (NPD) face common problems (Buyukozkan and Feyzioglu, 2004; Shane and Ulrich, 2004) and share many similarities (Nambisan and Wilemon, 2000). The research findings in the NPD domain are therefore relevant to SD (Nambisan and Wilemon, 2000). In this article we conduct a systematic literature review to identify the empirically validated best practices in the fuzzy front end (FFE) phase of NPD. The findings presented in this article will be useful as any improvement in the upstream front end phase of SD can result in the most positive impact on downstream SD activities (Hannola, Oinonen and Nikula, 2011)
Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells
BACKGROUND: Pituitary tumor transforming gene1 (PTTG1) is a novel oncogene that is expressed in most tumors. It encodes a protein that is primarily involved in the regulation of sister chromatid separation during cell division. The oncogenic potential of PTTG1 has been well characterized in the mouse, particularly mouse fibroblast (NIH3T3) cells, in which it induces cell proliferation, promotes tumor formation and angiogenesis. Human tumorigenesis is a complex and a multistep process often requiring concordant expression of a number of genes. Also due to differences between rodent and human cell biology it is difficult to extrapolate results from mouse models to humans. To determine if PTTG1 functions similarly as an oncogene in humans, we have characterized its effects on human embryonic kidney (HEK293) cells. RESULTS: We report that introduction of human PTTG1 into HEK293 cells through transfection with PTTG1 cDNA resulted in increased cell proliferation, anchorage-independent growth in soft agar, and formation of tumors after subcutaneous injection of nu/nu mice. Pathologic analysis revealed that these tumors were poorly differentiated. Both analysis of HEK293 cells transiently transfected with PTTG1 cDNA and analysis of tumors developed on injection of HEK293 cells that had been stably transfected with PTTG1 cDNA indicated significantly higher levels of secretion and expression of bFGF, VEGF and IL-8 compared to HEK293 cells transfected with pcDNA3.1 vector or uninvolved tissues collected from the mice. Mutation of the proline-rich motifs at the C-terminal of PTTG1 abolished its oncogenic properties. Mice injected with this mutated PTTG1 either did not form tumors or formed very small tumors. Taken together our results suggest that PTTG1 is a human oncogene that possesses the ability to promote tumorigenesis in human cells at least in part through the regulation of expression or secretion of bFGF, VEGF and IL-8. CONCLUSIONS: Our results demonstrate that PTTG1 is a potent human oncogene and has the ability to induce cellular transformation of human cells. Overexpression of PTTG1 in HEK293 cells leads to an increase in the secretion and expression of bFGF, VEGF and IL-8. Mutation of C-terminal proline-rich motifs abrogates the oncogenic function of PTTG1. To our knowledge, this is the first study demonstrating the importance of PTTG1 in human tumorigenesis
PTTG: an important target gene for ovarian cancer therapy
Pituitary tumor transforming gene (PTTG), also known as securin is an important gene involved in many biological functions including inhibition of sister chromatid separation, DNA repair, organ development, and expression and secretion of angiogenic and metastatic factors. Proliferating cancer cells and most tumors express high levels of PTTG. Overexpression of PTTG in vitro induces cellular transformation and development of tumors in nude mice. The PTTG expression levels have been correlated with tumor progression, invasion, and metastasis. Recent studies show that down regulation of PTTG in tumor cell lines and tumors in vivo results in suppression of tumor growth, suggesting its important role in tumorigenesis. In this review, we focus on PTTG structure, sub-cellular distribution, cellular functions, and role in tumor progression with suggestions on possible exploration of this gene for cancer therapy
- …